Enriching the Software Development Process by
Formal Methods*

Manfred Broy, Oscar Slotosch

Institut fiir Informatik, Technische Universitdt Miinchen
80290 Miinchen, Germany

Abstract. We describe a software development process designed for an
integration and usage of formal methods into practical software process
models in a scalable way. Our process model is an extension of the V-
model, and allows the specification of critical components and the verifi-
cation of crucial development steps. For different development stages we
suggest user-oriented description techniques, based on a common formal
semantic. Furthermore we outline methods for the verification of criti-
cal development steps. We illustrate our process by developing a small
example with some critical aspects.

1 Introduction

The development of software systems is a difficult and error prone task. This is
certainly true if systems get very large and complex. However, this may even be
true in cases where small to medium size programs have to be developed that
are based on complex algorithms, data structures, or patterns of interaction.

Today software development in practice is almost always done in a non-
scientific manner [Hoa96] based on pragmatics and heuristics. The development
process is structured into phases like:

— analysis and requirements engineering,
specification,

— design,

— implementation and testing.

In most cases, large parts of the development work are done informally and the
correctness of the developed systems relies mainly on the intuition and experience
of the developers received by extensive inspections, testing, and prototyping.
The debate is still going on whether there is a cost effective alternative to this
heuristic approach to software development including and applying so-called
formal methods.

In the early days of computing science there was not even a theoretical al-
ternative. The scientific foundation of programming computer systems were not

* This work was supported by the German Information Security Agency (BSI) within
the project Quest.

understood. Programming languages were seen as pragmatic, operational nota-
tions to control the machine, used on the basis of an intuitive understanding.
For many of the programming concepts a theoretical scientific foundation was
not available.

Today the theoretical situation has changed. Over the last 30 years the
scientific community of computer scientists has developed a solid foundation
of software and systems engineering [BJ95,Bro95]. Today there is nearly no pro-
gramming construct or development concept for which a scientific basis is not
available. Of course, still a lot of notation is used in practice for which such
a scientific foundation is not worked out explicitly. But this is not due to the
lack of theory but rather it has not been done since those people suggesting
the notation to a large extend have not yet recognized the virtue of a scientific
foundation. For an improvement of the formal basis of software development,
it is therefore highly important to have a clear idea what formal methods are
good for and how they are combined with informal ones in a way to get the best
benefit out of this combination.

Our paper is organized as follows. After a clarification of the term “formal
methods” (Section 2), we describe the role of formal methods in the develop-
ment process and how formal techniques can be combined pragmatically within
formal methods. In Section 3 we start with a short presentation of the V-model,
and show how formal methods can be integrated into the development process
in a scalable way by using them only for the critical parts and for important
development steps. In the rest of this paper we illustrate the development pro-
cess by means of a small example which is presented in Section 4. Section 5
describes different views of the system during the development process, espe-
cially in the requirement, design and implementation phases. Furthermore we
present graphical description techniques that can be used in a co-development
with formal and conventional methods since all description techniques are based
on the same semantic model. In Section 6 we present methods that support the
engineer in proving the correctness of development steps between different views,
and we analyze tool support for different refinement situations.

2 What is a Formal Method

In spite of the enormous amount of work spent on formal methods the notion of
a “formal method” is not always made sufficiently precise [Bro96]. We therefore
clarify this to begin with. First of all, let us define what we call a method in
computing science.

A method consists of description concepts, rules for constructing and relating
descriptions, and development strategies explaining how and when to apply the
method in a goal directed manner. We therefore refer in the following to three
ingredients of a method:

D: description concepts,
R: rules, and
S: strategies.

For each of these ingredients we can ask to which extend they are formal in order
to evaluate the degree of formality of the method.
Looking at description techniques D we identify the following aspects:

— syntax,
— semantics, and
— proof rules.

A description technique is fully formal if it has a formal syntex (including both
context free syntax and context correctness), a formal semantics (described in
a precise mathematical way), and a logical theory that supports formal proofs
about the descriptions and their properties.

A description technique is called semiformal if it has a formal syntax but not
a formal reference semantics nor proof rules.

The rules R of a method describe the rules for constructing and relating
descriptions correctly. For a formal method R consists of proof and transfor-
mation rules for the refinement between descriptions, and of (consistency) rules
describing the correct construction of descriptions. For a fully formal method we
require that the proof rules are given as a formal calculus or embedded by proof
obligations into a common logical theory such as first order predicate logic or
higher order logic. The same must hold for the transformation and consistency
rules.

Finally, a formal method should formalize its development strategies S. Of
course, we cannot expect, in general, that the strategies are formalized to a point
where the strategies are given by algorithms, such that they can be carried
out completely mathematically. In general, the developer guides and controls
the development process. We require, however, that the phases and steps are
characterized in a formal way, such that it is made precise when a development
process is in fact an instance of the overall development strategy.

3 V-Model

The V-model [BD95] is an ISO standard for structuring the software development
process. It is supported by the German Ministry of Defense. It contains many
detailed steps, guiding the developer through the software engineering process.
The name V-model origins from the main scheme of the model, which is depicted
as a V (see Figure 1). The left hand side of the V represents the waterfall model
of software engineering from requirements down to the program code. The right
hand side describes the quality control activities: testing of the components,
integrating them, and testing the whole system. The horizontal (dotted) lines
express that the requirements of the system have to match the result of the
integration test, the integration of the parts has to compose the system according
to the structure fixed in the decomposition during the design.

The model is independent from a specific programming or modelling lan-
guage, and therefore it is used in many developments projects. It supports the
development of components, since the activity of testing the components follows

N\
\ conventional methods . 4
Requirement Test
N < ---------------------- >
\\ %
/7
4
Design Integration
AN G =
\\ %
\ ’
4
Formalizajion Implementation Test Gerjeration of t¢sts

] Common Sematics
Refinement Correctness

Formal

Prover Tools critical parts Quality

Fig. 1. process model with formal methods

directly after the coding, and errors can be corrected immediately. However, er-
rors made during the decomposition can only be detected during the integration
of the system. And errors in the requirements are even more expensive, since
they are discovered at the last point, where the whole system is tested.

Formal methods promise that extensive testing is not required if these me-
thods are applied consequently. However, since a complete formal development
is not feasible for large projects, the hope for a better process model decreased.
We advocate a scalable use of formal methods, by integrating formal methods
into the V-model in order to reduce the number of expensive errors and of the
test overhead.

Our core concept is to work with user-oriented description techniques, basing
on a common formal semantic, to specify critical parts of the system. This basis
allows us to ensure the correctness of important development steps, during all
phases of the software development process.

There are two degrees in which the conventional development process can be
enhanced by formal methods:

— Using formal description techniques in the development process for the mo-
deling of the system views provides these views with a clear denotation and

reduces the number of misunderstandings that occur due to ambiguities of
specifications [GSB98]. To facilitate the development process, the applied
formal description techniques should be similar to those techniques estab-
lished in practical methods.

— Using formal refinement to ensure the correctness of critical development
steps is the fully formal way for proving the correctness [BJ95,Hin98]. There
are two ways in doing this: the deductive method allows the developer to do
any step, provided that its correctness can be deduced (after the step). The
transformational method restricts the developer a priori to the set of applica-
ble transformation rules. The first, more flexible, method requires to model
the abstract and the refined view and generates proof obligations, whereas
the transformational approach requires to integrate the result of the transfor-
mations into the development process. In case that the semantics are given
by a translation into a calculus, there is a retranslation required to continue
with the development on the conventional side. By allowing the developer
to prove the correctness of new transformation rules the transformational
method can be seen as a special case of the deductive method.

With these different levels of formality, the use of formal methods in the devel-
opment can be scaled according to the requirements of the project.

We recommend graphical description techniques with formal semantics (see
Section 5.5, [Bro95]). The formal semantics allow us to systematically generate
test cases from the specifications (Section 6.4, [Sad98,Par95]). This is a further
reason for using our formal description techniques in development projects.

4 A small Example: Traffic Lights

We develop the software for a traffic light system that controls a pedestrian
crossing. Pedestrians operate two buttons (one at each side of the street) to
request the green light. In addition, there are acknowledge lights on both sides
of the street to indicate the pedestrians that their request has been excepted by
the system.

The requirements for the software to make the system behave like a usual
crossing (e.g. both pedestrian and both car lights show consistent signals) are
assumed to be realized by the design and the implementation of the system.
As part of those functional requirements there are some critical aspects of the
system, which have to be guaranteed by the developer:

NO-CRASH: It must be excluded that pedestrians and cars have green lights
at the same time.

NO-BLOCK: It must be excluded to block the traffic, i.e. neither pedestrians,
nor cars have to wait forever.

SEPARATE: After the red phase for cars there is a yellow signal before the
traffic lights are switched to green. After the green phase there is again a
yellow light.

In fact, the mentioned requirements are of different nature. The first and the
last are are safety conditions, while the second one is a lifeness condition.

5 Formal Description Techniques for System Views

In this section we introduce formal description techniques that occur at different
stages during the development process and focus on different views of the system,
according to the requirements of the software development process at this stage.

We present graphical description techniques (see [HMR198]) with common
formal semantics for the modelling of the different views. The common formal
semantics allows us to define the relation between the different views and the
different development stages to support the formal development (see Section
6). The techniques are summarized in Section 5.5 to illustrate the different tech-
niques and to show how the degree of formality can be scaled we use the example
of Section 4.

5.1 Requirements Specification

The first views of a system within the development process occur in the require-
ments specification. The requirements specification covers the following aspects:

— Boundaries of the system to its environment.

— Interactions between the system and its environment (communication chan-
nels and messages). The interactions may be incomplete descriptions of the
behaviour of the system.

— Critical parts of the system (together with their interactions).

In our example we start with a data model for the messages which we define in
a textual notation:

data PedLight = PRed | PGreen

data CarLight = CRed | CYellow | CGreen
data Switch = On | Off

data Signal = Present

Note that the channels may be empty, therefore we need no signal Absent. Figure
2 shows the structure of the system, which contains (non-critical) components
to merge (ButMerge) and to split (AckSPlit, CLSPIit, PLSplit) the messages. The
only critical component is the controller, which is developed more formally.

The critical requirements, which the controller has to fulfil in any case, are
formalized using temporal logic (with the until-operator U and the next-operator
0).

NO-CRASH: O -(CL=CGreen A PL=PGreen)

NO-BLOCK: 00 & CL=CGreen A O (But=Present = & PL=PGreen)

SEPARATE: ((CL=CGreen U (CL=CYellow A OCL=CRed)) U CL=CRed)
U CL=CYellow

Of course, there are many more requirements that are less safety critical such as
that the pedestrian light only gets green if the button is present.

Butl:Signal

But:Signal CL:CarCol

But2:Signal

O
ButMerge:
O
AckSplit (>

Fig. 2. Structure of Traffic Light System

Control |l er

Ack:Switch

PL:PedCol

Note that in NO-BLOCK < PL=PGreen does not always hold. If no pedes-
trian arrives, the light will never become green. The specification of temporal
logic formulas, especially using the until-operator U is not an easy task. There-
fore more readable notations are useful. Interaction description diagrams are
an intuitive way to specify some temporal formulas. However, they are not as
expressive as the temporal logic (see below).

Controller CLSplit

CL=CGreen *
| 1'

CL=CYellow
|

CL=CRed *
- |1

CL=CYellow
|

SEPARATE

Fig. 3. Visualization of Separation Property

The critical aspect SEPARATE has a representation as an interaction dia-
gram. In Figure 3 the (strong) until-operator U is visualized by the (1 - *) modi-
fier in the interaction diagram. Note that we omitted the outputs of the compo-

nent CLSplit in the diagram, because CLSplit is not a critical component, and we
therefore do not formally specify its behaviour!. Using interaction description di-
agrams like EETs (extended event traces [BHKS97]) or MSCs [IT93b] in this way
is only possible if there exists a formal semantics (see [BHKS97,Bro98,Hau97]
for semantics of EETs and MSCs).

The properties NO-CRASH, and NO-BLOCK cannot be represented so
easily by EETs or MSCs. It is a current research topic to extend expressive-
ness of graphical description techniques towards more complex properties. One
straightforward extension of EETs is the visualization of simultaneous actions,
as developed within the project Quest. It uses time ticks to group messages
together that occur within the same time interval. In our example we specify
the crash-situation in Figure 4. Note that this property must not occur in our
system.

Controller CLSPIit PLSplit
CL=CGreen
PL=PGreen
.
Crash

Fig. 4. Visualization of Crash Property

Deciding during the specification of requirements what a critical component
is, the user can be supported by searching all components of the system that
produce messages mentioned in the specification of critical properties. In our
example this are the components ButMerge and Controller. We decided not to
regard ButMerge as critical, since its output is used only as a premise within the
property NO-BLOCK.

In the case of a more abstract security model it might be necessary to map the
general properties to the concrete components. In our example the property that
no car hits a pedestrian has been mapped informally to the controller property
NO-CRASH. Ensuring adequacy of this mapping would require to build a
model of the application domain, including assumptions to the environment,
like every car stops at a red light, or pedestrians leave the crossing no later than
5 seconds after they have entered it. In our small example we do not model the
environment.

! It is also possible to omit the component CLSplit from the interaction diagram com-
pletely, but we want to show the interaction within interaction diagrams.

5.2 Design Specification

The second class of views of developed systems occur in the design phase. They
capture the structure of the system (together with all channels and data types)
and a concrete description of the behaviour of the components. For the critical
components we require that there is a formal design specification in order to
verify that the requirements are fulfilled (see Section 6.2). To ensure quality of
non-critical parts a coarse formal specification of the design of the behaviour can
help to develop test cases (see Section 6.4).

We use system structure diagrams (SSDs) to specify the design structure (as
in the requirements specification) of the system, and state transition diagrams
(STDs) to model the behaviour of components, since they have the same math-
ematical basis and therefore semantically fit the techniques of the requirements
specification.

In our example we refine the structure of the controller into a core controller
and a timer, which is used for timing the behaviour of the system. This structure,
and the communication channels are depicted in Figure 5. The timer component

[] @)
But%{gnal Ack:§witch
set:Nat I
CoreControl | er timeout:Signal Timer

Fig. 5. Structure of Controller

uses the type of natural numbers, which is specified with the some functions
working on them in the following data type specification:

data Nat = Zero | Succ(Nat);
fun pred(Succ(n)) = n;

The behaviour of the timer is specified by the STD in Figure 6, using tuples of
preconditions, input, and output patterns and actions as transitions. The specifi-
cation of the behaviour of the core controller is shown in the STD of Figure 7. It
shows the two main states of the system: The state Wait, where pedestrians have
to wait, and the state Walk where they may start walking. The transitions be-
tween the states show how the pedestrians lights are switched. The behaviour in
Figure 7 is not completely designed, because it does not specify how the controller
reacts on input, and how it switches the cars light. These details are modelled

N>Zero:set?N: T=N
set?Zero:timeout!Present: T>Zero:: T=pred(T)
T=Zero:timeout!Present:

Fig. 6. Behaviour of Timer

:PLIPRed:
:PL!PRed: =
‘PLIPGreen: = PLIPRed:
PL!PGreen:

Fig. 7. Behaviour of CoreController

within the refined (sub-)STDs for the states Walk (Figure 8) and Wait (Figure 9).
The introduced hierarchy is only syntactic, i.e the transitions (segments) are con-
nected, such that the control in a hierarchic automaton is exactly in one atomic
state. All transitions (segments) between different levels of abstractions are ex-
ecuted within one step. For example the transition from the atomic state Yellow
to the atomic state Red leaves the hierarchic state Wait and enters the hierarchic
state Walk and generates the output: CL!CRed,Ack!Off,PL!PGreen,set!ten

timeout?:PL!PGreen,CL!CRed: timeout?:PL!PRed,CL!CRed:
timeout?Present:set'five,PL!PRed,CL!CRed:
AllRed

timeout?Present: ¢
:setlten:
° O

Fig. 8. Behaviour of Walk

Hierarchy is a very useful feature in formal notations. It allows us to specify
the critical components at the right level of abstraction. Furthermore hierar-
chic formalisms support the development of larger systems. This is extremely
important if graphical notations are used, since complex diagrams are hard to
understand.

5.3 Implementation Specification

The third class of views on systems occur in the implementation specification,
and describe the program code. They cannot be clearly separated from the views
during the design phase. The main difference is that a design specification does

©)
o
:CLICRed,AckIOff: \L :CLICYellow:

timeout?Present:CL!CYellow,PL!PRed:
But?:PL!PRed,CL!CGreen:

But?Present:Ack!On,setlfive!PLIPRed,CL!CGreen:

Fig. 9. Behaviour of Stop

not need to be deterministic, but an implementation and its specification should
be deterministic; otherwise the test results may not be repeatable.

The program code can be seen as the most detailed design specification. There
are at least two different possibilities to formally specify the implementation:
one is to use a programming language with formal semantics, the other way is to
use the same formal description techniques as in the design specifications and to
generate code out of them. Many description techniques support code generation
(Statecharts [Har87], SDL [IT93a], and STDs [HS97]).

Since a common semantics for all views is required, we recommend again to
use STDs for the specification of the code. In our example the detailed design
specification of the core controller (Figures 7, 8, and 9) is deterministic, and we
can generate code out of it. The component Timer was classified to be non-critical
for the following reasons:

— It has an infinite state space (it contains a variable T:Nat, to store the re-
maining time), and therefore it cannot be model checked completely. Treating
the timer as critical would require interactive theorem proving (see Section
6), which in our case is not adequate.

— Treating it as non-critical allows us to implement it manually, for example
using a realtime-clock that ensures that the distance between two ticks is no
less that 100 ms?.

We restrict our implementation specifications to deterministic programs. For
non-critical parts of the system any (deterministic) programming language can
be chosen, the only important point is that the interfaces fit to the formal inter-
face specification.

5.4 Test Specification

Our last class of views in the development process describe test cases. Testing
components is only necessary if they are developed informally. Specifying test
cases is useful for documentation purpose, and a specified test case can be reused
if the implementation has changed. In Section 6.4, we show how test cases can
be generated from specifications.

2 The upper bound depends on the cycle time of our system and cannot be ensured
formally within our time-free model.

As a representation of a test case we choose interaction diagrams (with time
ticks), as they were presented in Section 5.1, but we do not require the full power
of them, since for testing one component or one system an interaction diagram
with one axis suffices. Furthermore we require to have concrete input values (no
variables) on the input messages, to test the component.

5.5 Description Techniques

The description techniques used during the development process are summarized
in the following table:

[name|[purpose [phases [hierarchy [semantics

DTD ||data types |all phases inclusion of DTDs |algebras

SSD ||structure |all phases SSDs for components|streams & functions
STD ||behaviour |design, implement.|STDs for substates |IO-automata

EET ||Interaction|requirement, test |EETS in boxes predicates

Note that we did not use the inclusion of data types, nor the grouping of EETs
into boxes in our example. However, since hierarchic description techniques sup-
port different levels of abstraction it is important that all description techniques
are hierarchical.

AvutoFocus [HMR198] is a tool that supports the specification, with all
these description techniques and has features like consistency checks and simu-
lation. The common semantical basis of the description techniques is described
in [BDD*93,Bro95].

6 Development

In the previous section we presented graphical support for the specification of the
different views, which occur at different stages within the development process.
Furthermore we integrated formal methods into conventional software engineer-
ing in a way that only the critical parts have to be formally modelled. The used
description techniques have a formal semantics. In this section we will exploit
the fact that this semantics is uniform, i.e. all description techniques have a
denotation within the same semantic model. This allows us to define relations
between different description techniques. The fact that these relations can be
formally checked provides us with a powerful tool to develop correct software.

6.1 Checking Requirements against Design

In this section we present methods that allow us to formally verify whether a
design specification meets its requirements specification. We discuss different
specifications and present different techniques for tool supported correctness
proofs.

The most simple case is a deterministic design and simple temporal formulas,
which can be represented by EETs. This situation corresponds to a formal test.
To “verify” this it suffices to feed the input values according to the specification
of the test case (EET) into a simulation of the component and to compare the
outputs. If the outputs fit together the test is successful. One example is the re-
quirement SEPARATE, specified in the EET of Figure 3. Simulating the design
specification “proves” that this requirement is fulfilled by the specification.

A slightly more difficult case is that of non-deterministic automata and non-
deterministic (but finite) choices in the interaction description diagrams. It re-
quires backtracking if the output of the component does not fit to its require-
ments. Backtracking checks all alternatives. If they are finite, backtracking can
decide whether the requirements hold. Since the programming language Prolog
supports backtracking, it seems appropriate for this form of verification®. If the
alternatives within a program are not finite, for example due to an input value
with infinite range Prolog might find a solution. But it might also not terminate,
if no solution exists.

If the requirements are specified with temporal logic, especially using a nega-
tion (like in NO-CRASH), simulation has to inspect all cases to ensure that
the requirement is valid. In this case model checkers are more efficient than Pro-
log is. This case is standard in model checking using temporal logic and a finite
state model of the behaviour. In our example the properties NO-CRASH, and
NO-BLOCK could be verified with the model checker.

The most difficult case for the verification of requirements specified with
temporal logic are infinite (or very large) models. In this case interactive theorem
proving is appropriate. Using abstraction techniques allows us to reduce the
model, and to produce simple proof obligations. However it is not easy to find
the right abstractions that maintain the correctness of the model with respect
to the desired property.

Model checking is today the only industrial accepted proof technology. How-
ever, without abstraction the application is restricted to the class of small and
finite systems. Fortunately many embedded systems belong to this class.

6.2 Refinement

Refinement defines the relation between the requirements specification and the
design as well as between the design and the implementation model. The refine-
ment relation [Bro95] is transitive, such that a stepwise development is possible,
and monotonic for the composition operators to support a modular develop-
ment. In this section we present some development steps and the corresponding
techniques to ensure correctness.

The easiest refinements are straightforward structural refinements, since they
do not require to prove correctness. One example is the refinement of the com-
ponent Controller in Figure 2 by the structure given in Figure 5. The definition
of a behaviour for the components CoreController and Timer is also a refinement

3 Within project Quest we are evaluating Prolog for this purpose.

step without proof obligation. In the case the refined structure (in our case Con-
troller) has a behaviour associated, it has to be proved that the refined structure
or behaviour is indeed a refinement (behavioural refinement). In our example
the refinement of the states (Figure 7) by the automata describing the substates
(Figure 8, and 9) are behavioural refinements.

The proof obligations of behavioural refinement can be proved by model
checking (in finite and small cases) or by interactive, deduction based theorem
proving (in the general case). Both proof techniques ensure that the behaviour
of the refined component is correct with respect to the behaviour specification
of the abstract component. Other typical examples are the elimination of un-
derspecification, or the implementation of one data structure by a more efficient
one.

Special cases for behavioural refinements are abstractions between two mod-
els that occur during the requirements verification, and the refinement of in-
terfaces, which also bases on abstraction techniques [Slo97]. With these devel-
opment steps every step of the software engineering process can be formally
verified, however, since formal refinement is a time consuming activity the effort
can be reduced by refining only critical components formally.

In the development process (see Figure 1) there are informal steps from the
abstract views towards more concrete views. The formalization by the seman-
tic model and its representation in logics allows us to prove the correctness of
such steps. In some situations it might be helpful to do some new refinement
steps within the formal model, and to translate the result back to graphical de-
scriptions in order to continue with a semi-formal development. In the project
Quest (see Section 7) we provide partial retranslations from formal into graphical
description techniques.

6.3 Code Generation

As mentioned in Section 5.3 there exist a generation of code from “executable
specifications” . One of the crucial challenges in the application of formal methods
is to formally prove the correctness of code generators [BBF192].

6.4 Generation of Tests

In Section 5.4 the general representations for test-cases are described. In this
section we focus on the generation of test cases from specifications.

As mentioned in the previous section refinement is quite time consuming and
expensive, even compared with producing a formal specification of a system.
It might be useful to specify the non-critical components formally, even if no
refinement is intended. The reason for this is that a formal specification, even
if it is only an abstract interface specification can serve as a good basis for test
case generation.

The process of testing is done in the following steps:

1. selection of test cases and input values,

2. determination of output values for all (combinations of) input values,
3. representation of the test (documentation and reuse), and
4. testing the implementation.

There are many methods that allow us to derive test cases from the specification
of the components. One popular method is the transition tour which suggests
to find a test suite that covers all transitions of the automata describing the
behaviour. Problems of this method, developed for automata without input and
local variables, are to find the right input values and to ensure that the suggested
transitions are possible. We do not go into the details of the test generation here
we just refer to the work of the project Quest, especially [Sad98], and show the
result of the test cases generation for the timer.

Timer Timer Timer
set.Zero set.five set.ten
—>
tiemout.Present 5 10
tiemout.Present tiemout.Present
Case Zero Case five Case ten

Fig. 10. Test cases for Timer

The input values were selected as a classification of natural numbers. Note
that the time-ticks are essential in the diagram, since there is no (observable) sig-
nal to express time progress. If the implementation of the timer is deterministic
and fulfils our test cases, the correctness of the critical component is ensured.

7 Conclusion and Future Work

We presented an extension of a conventional process model, with integrated
formal methods, as far as it is desired, into the software engineering process. The
technical foundation for this process model is the uniform semantic basis for the
description techniques used within the development process. We demonstrated
this technique by an example which we developed with user-oriented description
techniques for structure, behaviour, and interaction, based on a model for data
types. Our technique of a common semantic basis may also be applied to other
description techniques to yield analogous results.

Note that the expressive power of the formal model influences the provable
properties. If, for example, real-time properties have to be proved, an adequate

model is required, however, a complex model is often more difficult to handle.
Finding expressive and practical models is a challenge in research. We decided
to use a simple but extendable model for our description techniques that allows
us to develop embedded systems and that can be easily extended to more com-
plex applications like real-time, hybrid [MS96], dynamic, and object-oriented
[BGH98] systems.

The biggest part of the effort in applying formal methods is the work in
proving the correctness of refinement steps. Since the costs for learning and
using formally founded description techniques is relatively small we recommend
to use them in many parts of the development for the following reasons:

— Formally founded description techniques are a clear and precise way to model
different views of the system.

— It is easier to increase the applications of formal methods within a develop-
ment project, for example by deciding that a former non-critical component
becomes critical.

— Specification based test methods can be applied to generate test cases sys-
tematically.

The future work can be divided into two directions. One is the formalization of
additional description techniques [BCMR97,Hin98]. However, since many graph-
ical description techniques, especially from UML, have many features, the re-
quired semantic model becomes complex [BGH198] and this will make refine-
ment steps difficult. It is therefore crucial to increase the expressive power of
theorem provers and model checkers to handle complex models.

Another direction of future work is to provide tools for the formalization of
description techniques with a simple and common semantic basis. In our Munich
research group this direction is pursued within the project Quest. The goal of the
project Quest is to provide tools for the co-development of embedded systems.
To achieve this goal we concentrate on the description techniques presented in
this paper, and we connect AUTOF0CUS, the modeling tool with model checkers
and the theorem proving environment VSE II [RSW97]. For the development of
non-critical parts of the systems we provide a test environment with specification
based test generation techniques.

Acknowledgment: For many helpful comments on previous versions of this paper
we thank Katharina Spies, Bernhard Schétz, and Peter Braun.

References

[BBF192] Bettina Buth, Karl-Heinz Buth, Martin Frizle, Burghard von Karger, Yas-
sine Lakhneche, Hans Langmaack, and Markus Miiller-Olm. Provably Cor-
rect Compiler Development and Implementation. In Uwe Kastens and Peter
Pfahler, editors, Compiler Construction, 4th International Conference on
Compiler Construction, volume 641 of Lecture Notes in Computer Science,
pages 141-155, Paderborn, Germany, 57 October 1992. Springer.

[BCMR97] Manfred Broy, Derek Coleman, Tom S. E. Maibaum, and Bernhard Rumpe,

[BDY5]

[BDD93]

[BGH™98]

[BHKS97]

[BJ95]

[Bro95]

[Bro96]

[Bro9g]

[GSBYS]

[Har87]

[Hau97]

[Hin98]

editors. Proceedings PSMT’98 Workshop on Precise Semantics for Modeling
Techniques. Technische Universitaet Muenchen, TUM-19803, April 1997.
Adolf-Peter Brohl and Wolfgang Droschel. Das V-Modell. Oldenbourg,
1995.

M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, and R. We-
ber. The Design of Distributed Systems: An Introduction to Focus—Revised
Version. Technical Report TUM-19202-2, Technische Universitdt Miinchen,
1993.

Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang
Schwerin. Systems, Views and Models of UML. In Martin Schader and
Axel Korthaus, editors, The Unified Modeling Language, Technical Aspects
and Applications, pages 93-109. Physica Verlag, Heidelberg, 1998.
Manfred Broy, Christoph Hofmann, Ingolf Kriiger, and Monika Schmidt.
Using extended event traces to describe communication in software architec-
tures. In Asia-Pacific Software Engineering Conference and International
Computer Science Conference, Hong Kong. IEEE Computer Society, 1997.
Manfred Broy and Stefan Jahnichen, editors. KORSO: Methods, Languages
and Tools for the Construction of Correct Software, volume 1009 of Lecture
Notes in Computer Science, New York, N.Y., 1995. Springer-Verlag.
Manfred Broy. Mathematical Models as a Basis of Software Engineering. In
J. van Leeuwen, editor, Computer Science Today, volume 1000 of Lecture
Notes in Computer Science, pages 292-306. Springer-Verlag, 1995.
Manfred Broy. Formal Description Techniques - How Formal and Descrip-
tive are they. In R. Gotzhein and J. Bredereke, editors, FORTE IX, 95-112.
Chapman & Hall, 1996.

Manfred Broy. On the Meaning of Message Sequence Charts. In La-
hav, Wolisz, Fischer, and Holz, editors, 1st Workshop on SDL and MSC
(SAM98), pages 13-32, 1998.

R. Grosu, G. Stefanescu, and M. Broy. Visual Formalisms Revisited. In
L. Lavagno and W. Reisig, editors, CSD ’98, International Conference
on Application of Concurrency to System Design, Aizu-Wakamatsu City,
Fukushima. IEEE Computer Society Press, 1998.

D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, 8:231 — 274, 1987.

Markus Haubner. Transformation von MSCs in temporallogische Formeln,
1997. Diplomarbeit.

Ursula Hinkel. Formale, semantische Fundierung und eine darauf
abgestitzte Verifikationsmethode fir SDL. PhD thesis, Technische Univer-
sitdt Miinchen, 1998.

[HMR*98] Franz Huber, Sascha Molterer, Andreas Rausch, Bernhard Schitz, Marc

[Hoa96]

Sihling, and Oscar Slotosch. Tool supported Specification and Simulation
of Distributed Systems. In Bernd Kramer, Naoshi Uchihira, Peter Croll,
and Stefano Russo, editors, Proceedings International Symposium on Soft-
ware Engineering for Parallel and Distributed Systems, pp. 155-164, ISBN
0-8186-8467-4, pages 155-164. IEEE Computer Society, Los Alamitos, Cal-
ifornia, 1998.

C. A. R. Hoare. The Role of Formal Techniques: Past, Current and Future
or How Did Software Get so Reliable without Proof? In 18th International
Conference on Software Engineering, pages 233-235, Berlin - Heidelberg -
New York, March 1996. Springer.

[HS97]

[IT93a]
[IT93b]

[MS96]

[Par95]

[RSW97]

[Sad98]

[S1097]

Franz Huber and Bernhard Schétz. Rapid Prototyping with AutoFocus. In
A. Wolisz, 1. Schieferdecker, and A. Rennoch, editors, Formale Beschrei-
bungstechniken fir verteilte Systeme, GI/ITG Fachgesprich 1997, pp. 343-
352. GMD Verlag (St. Augustin), 1997.

ITU-T. Recommendation Z.100, Specification and Description Language
(SDL). ITU, 1993.

ITU-T. Recommendation Z.120, Message Sequence Chart (MSC). ITU,
1993.

Olaf Miiller and Peter Scholz. Specification of Real-Time and Hybrid
Systems in FOCUS. Technical Report TUM-19627, Technische Univeritat
Miinchen, 1996.

D.L. Parnas. Using Mathematical Models in the Inspection of Critical Soft-
ware. In Michael G. Hinchey and Jonathan P. Bowen, editors, Applications
of Formal Methods, International Series in Computer Science, chapter 2,
pages 17-31. Prentice Hall, 1995.

Georg Rock, Werner Stephan, and Andreas Wolpers. Tool Support for
the Compositional Development of Distributed Systems. In Tagungsband
7. GI/ITG-Fachgesprich Formale Beschreibungstechniken fir verteilte Sys-
teme, number 315 in GMD Studien. GMD, 1997.

S. Sadeghipour. Testing Cyclic Software Components of Reactive Systems
on the Basis of Formal Specifications. PhD thesis, Technische Universitt
Berlin, Fachbereich Informatik, 1998.

Oscar Slotosch. Refinements in HOLCF': Implementation of Interactive Sys-
tems. PhD thesis, Technische Universitdt Miinchen, 1997.

