
Determining Compatibility of Embedded Software Components
by Communication Obligations

Peter Braun1 Jan Philipps1 Bernhard Schätz2

1 Validas AG
Lichtenbergstr. 8

85748 Garching, Germany
{braun,philipps}@validas.de

2 Institut für Informatik
Technische Universität München

Boltzmannstr. 3
85748 Garching, Germany

schaetz@in.tum.de

The implementation of automotive systems by
steadily growing ECU networks leaves testing increas-
ingly inappropriate as the only means of assuring com-
patibility of controller interactions. Other techniques,
including prescriptive and analytic methods at design
level, are needed instead, to ensure an effective and effi-
cient development process. While compatibility checks
restricted on architectural descriptions do not capture
the necessary dynamic aspects, checks based on full
behavioral models do not yet scale for practical appli-
cations. Here, the description of communication obli-
gations offers a trade-off between completeness and
applicability. To support a methodical approach to
compatibility assurance, domain-specific concepts like
state/event-signals and modes are introduced, a formal-
ization suitable for mechanic checking is defined, and
the relation between interface descriptions and testing
is discussed.

1 Introduction

Software engineering for embedded systems is under-
going a paradigm shift from (a more or less mono-
lithic view on) ECUs to networks of interacting soft-
ware components with well-defined interfaces.

This component view is supported by a number
of modeling languages for embedded systems. Typ-
ically, these languages are supported by CASE tools
such as ASCET, MATLAB & Simulink, Statemate
or AUTOFOCUS. Most of these languages describe
both the system structure—by some kind of structure
diagrams, which show the interconnection of system
components—and system behavior, usually with some

kind of state transition diagrams.

In addition to these behavioral approaches, there are
also modeling approaches that mainly describe sys-
tem structure, while giving the system developer al-
most complete freedom of how to implement system
components—for instance, in standard programming
languages like C, C++ or Java, or by wrapping legacy
code or COTS components. Here the system structuring
serves to restrict the interface complexity between com-
ponents. Examples for this approach are AUTOSAR [4]
and EAST/EEA [7].

Independent of the implementation question, model-
ing languages typically have a notion of compatibility
of components in order to ensure that component com-
position is well-defined. In the simplest structural mod-
els, compatibility means only that component outputs
may not be connected to other outputs or that a com-
ponent input may only be connected to a single compo-
nent output. Usually, type information is also consid-
ered, meaning for instance that integer-valued outputs
may not directly be connected to floating-point-valued
inputs.

For behavioral models, more complex compatibility
checks can be defined, taking into account the proper
pairing and timing of output and input commands in the
system components; see [2] for such an approach.

In this paper, we introduce the concept of compatibil-
ity for an interface notion based oncommunication obli-
gations(Section 2). Essentially, communication obliga-
tions state whether communication between two com-
ponents is forbidden, whether it is required, or whether
it is optional. This approach is then extended to deal
with more complex interaction patterns based on com-

1



structure models

communication models

timed communication models

behavior models

Figure 1: Abstraction levels for interface specifications

munication schedules [6] (Section 3).
As shown in Figure 1, the specification of commu-

nication obligations and communication patterns can
be regarded as modeling at an abstraction level just
between a pure structure model (where compatibility
checks are based on type checking) and the detailed
communication models derived from complete behav-
ioral models.

In addition to determining whether two components
can safely beconnected, the compatibility notion pre-
sented here also allows us to determine if a component
can be safelyreplacedby another component. For this
application scenario it is easy to see that full behav-
ioral compatibility is not only computationally costly
but also methodically inadequate: Only rarely is a re-
placement component intended to have precisely the
same behavior as the original component. More often, it
incorporates a number of bug fixes and additional func-
tionalities. At the level of communication models, how-
ever, compatibility can be ensured for the harmonious
interoperation of the system after the replacement. In
Section 4 we show how communication obligations can
be analysed.

Of course, compatibility of component interfaces
does not guarantee that a system implementation indeed
obeys these conditions; Section 5 sketches how existing
test processes can be extended to observe whether com-
ponent implementation indeed satisfy their obligation-
based interfaces.

2 Communication Obligations

We consider systems consisting of networks of compo-
nents. Components communicate viasignals, i.e. func-
tions mapping time values to a data value. Signals can
be used to describe both state-based and event-based
communication. In the first case, signal values rep-
resent data flow (e.g., between quasi-continuous com-

A B
s

e

o1

o2

i1

i2

Figure 2: Component connection by state signals,
event signale

ponents modeled by Simulink block diagrams), in the
second case, signal values represent control flow in
the sense that they carry synchronisation information
(e.g., between discrete state-based components models
by Stateflow state transition diagrams).

System components haveinterfaces, which consist of
a number of input and outputports. Connectorslink
output ports of one component with input ports of an-
other. For each connector, there is a signal describing
the data or control flow. It is possible for one output
port to be connected to multiple inputs ports, but we as-
sume that in the dual case explicit merge components
are included to resolve inconsistencies between differ-
ent signals.

Figure 2 shows a trivial model of two componentsA
andB which are connected by a state signals and an
event signale. Not all components can be connected—
they must becompatible.

2.1 Compatibility

What does it mean for componentsA andB to be com-
patible? In general, we expect that there is a common
condition on the communication between the compo-
nents that ensures that the sender (componentA) only
generates signals that can be processed by the receiver
(componentB).

Usually, this condition is justtype correctness. For
type correctness, the component interface ofA assigns
to each of the output portso1 ando2 a type (i.e., a set of
data values thatA may send over the port); similarly, the
component interface ofB assigns to each of the input
portsi1 andi2 a set of values thatB is able to read from
the ports. Type correctness in its simplest form means
that the types assigned too1 andi1 and too2 andi2 are
identical. Types can be regarded as a simple contract
betweenA andB that A does not send values thatB
cannot process.

In our model we enhance the notion of compatibility
beyond this simple type correctness condition. First, we
use the distinction between event- and state-based sig-
nals. Second, we introduce communication obligations

2



for output and input ports of components, which may
change depending on the current mode (respectively the
internal state) of a component. In the following the no-
tion of communication obligations and the definition of
compatibility based upon obligations is introduced.

2.2 Static Obligations

Types refer to possible signal values, but not to com-
munication acts themselves. Intuitively, we might ex-
pect state communication to take place throughout sys-
tem execution, and event communication to take place
only at some discrete time points chosen by the sender
component. This is not reflected in the component in-
terfaces, however.

To formalize the communication aspect, we must ex-
plicitly specify for each port whether we expect com-
munication to occur, by assigningcommunication obli-
gations to ports (‘Communication forbidden’, ‘Com-
munication may occur’, ‘Communication must occur’).

For state-based communication, which is used to
convey computational information, it is generally con-
sidered safe to write a signal more often, than it is
read. Symmetrically, event-based communication used
to transport commands is considered safe, when each
raised event is observed.

This leads to the following communication obliga-
tions, which can be read as contracts between a compo-
nent and its environment:

State input signal: The environment provides a signal
whenever the component requests a signal.

State output signal: The component provides a signal
whenever the environment requests a signal.

Event input signal: The component consumes a sig-
nal whenever the environment supplies a signal.

Event output signal: The environment consumes a
signal whenever the component supplies a signal.

That means for example for an event input port of a
component, that if communication may occur the com-
ponent guarantees that the input is consumed.

For compatibility checks, it is sufficient to identify
combinations of communication obligations that are er-
roneous: communication must take place at an output
port, but is forbidden at the input port; communication
must take place at an input port, but is forbidden at the

A B
s

e

o1

o2

i1

i2

Mode information:
• User interface: Switches, dials, displays
• Plant state: position, speed, temperature
• Operation phase: initialization, normal,

fail-safe, shutdown

Figure 3: System modes

output port; communication must take place at an in-
put port, but communication only may take place at the
output port.

In the static form presented above, communication
obligations offer little use: If communication is forbid-
den, one might as well just remove the connection be-
tween the relevant ports; the difference between “may”
and “must”-communication could simply be modeled
by two different connection kinds.

The situation is different, when the communication
obligations are dependent on modes or states, as dis-
cussed below. Furthermore, obligations can combined
with temporal restrictions (like signal periods); this ex-
tension is presented in Section 3.

2.3 Mode-dependent Obligations

Embedded systems typically operate in different modes.
Modes are rather coarse partitions, distinguishing be-
tween different phases (e.g., start-up, operation, shut-
down) or control schemes (e.g., cranking, warm-up,
running). As theses phases and scheme often affect the
overall system, modes of operation are introduced to
reflect them. Usually, the communication between two
components is mode-dependent.

In contrast with the (internal) component states, there
is a system-wide agreement on the current mode. Of
course, this agreement must be ensured somehow, ei-
ther by common observation of externally visible in-
puts, or by a synchronization protocol. The details of
how agreement is ensured are irrelevant for the specifi-
cation of application-dependent interface behavior. In-
stead, as indicated in Figure 3, on the application design
level modes can in general be understood as externally
visible states.

To describe mode-dependent communication obliga-

3



A B
s

e

o1

o2

i1

i2

Figure 4: Internal State

tions, the notion of interface and compatibility check is
adapted as follows:

• A component interface assigns to each port a map-
ping from modes to communication obligations.

• For compatibility checking, the compatibility of
the communication obligations of two connected
ports must be checked for every mode.

The complexity of a compatibility check is affected
by the complexity of the modes. As, however, in gen-
eral modes represent a coarse abstraction of environ-
ment and system state, they do not drastically increase
the complexity; in practice, by structuring the behavior
of the system, they often decrease the overall complex-
ity of a check.

2.4 State-dependent Obligations

In addition to modes, component behavior—and thus,
its communication behavior—may also depend on an
internal state which is not directly observable. As illus-
trated in Figure 4, behavior depending on internal state
is often described by state machines, but also arises
from the control flow in common programming lan-
guages.

To describe (internal) state-dependent communica-
tion obligations, the notion of interface and compati-
bility check is adapted as follows:

• A component interface assigns to each port a map-
ping from the internal state to a communication
obligation.

• For compatibility checking, the compatibility of
the communication obligations of two connected
ports must be checked for each reachable pair of
internal states of componentA andB.

Internal states, in contrast to modes, are not directly
controllable by the component environment. Instead,
the component state is dependent on a sequence of en-
vironment inputs. Components may also enter differ-
ent states depending on purely internal choices; to an

external observer, such components are nondetermin-
istic. Because of nondeterminism, interface specifica-
tions may be weaker than intended or even contradic-
tory (for two internal states which map onto the same
mode).

Note that compatibility checks are substantially more
expensive for states than for modes, as every reachable
state combination must be examined—in practice, this
requires state-space exploration tools like model check-
ers.

3 Timed Obligations

The notion of communication obligations can be ex-
tended with a timed dimension, describing for instance
signal periods. The formalization of concepts like state
and event signals and the interface descriptions that de-
fine communication obligations is based on timed au-
tomata and more complex than in the untimed case. As
incompatibility of communication obligations can be
regarded as lack or loss of signals, these formalizations
are extended to detect those forms of communication
faults.

Signal schedulesdescribe the interface for a single
signal; the interface descriptions follow a standard pat-
tern. These aspects are described below. Signal sched-
ules can also be composed; for instance, their parallel
composition is used to describe the obligations for a
compound interface. For details on the composition of
schedules, see [6].

3.1 Interaction Patterns

Schedules are focused on the description of the interac-
tion obligations of components. Thus, in general they
represent abstractions of the actual behavior of those
components. For practical usability, it is necessary
to offer standard forms to describe these abstractions.
Here, we use a modular approach similar to [5] that al-
lows to construct complex descriptions by combining
simpler patterns.

To illustrate the principles of this form of modular de-
scription, Figure 5 shows some simple behavioral mod-
ules. Each module describes a part of the overall be-
havior of a component. To combine these modules,
each module includes (a set of) entry and exit locations.
The left-hand module{s1, . . . , sn} of Figure 5, e.g., de-
scribes a partial behavior that, once entered through en-
try locationstart is ready to accept a single signal from

4



Hπ

start endhold

c ≤ πc = 0 c = 0

c = π::c' = 0
{s1...sn}

start end

c = 0:s1:c' = 0

c = 0:sn:c' = 0

...
c = 0 c = 0

clock cclock c

Figure 5: Simple Patterns of Standard Behaviors

the set{s1, . . . , sn} and can then be exited through exit
locationend.

To formalize the behavior of a module, the concepts
of timed automata are used: locations (e.g.,start, end,
hold), variables (including clocks, e.g.,c), and tran-
sitions. Here, transitions—connecting locations—are
annotated with a pre-condition (characterizing a possi-
ble state of the variables prior to the execution of the
transition), a synchronization label (synchronizing the
interactions of a component and its environment), and
a post-condition (characterizing a possible state of the
variables after the execution of the transition). Thus,
the label “c = 0 : si : c’ = 0” states that by exchanging
signal si when clockc = 0, the transition can be exe-
cuted, leavingc = 0 unchanged. As usual, unprimed
variables reference values in the state before the execu-
tion of the transition, primed variables reference values
after its execution.

Note that entry and exit locations need not be dis-
joint; the right-hand moduleHπ describes a partial be-
havior with overlapping entry and exit location (indi-
cated by the dashed lines connecting them to the inter-
nal locationhold). To define the behavior—requiring a
component to repeatedly hold all interaction for a du-
ration ofπ until exited—invariants are used, restricting
the possible state of variables while in that location. In-
variant “c ≤ π”, e.g., enforces a transition at timeπ.

3.2 Signal Schedules

Embedded software is generally built upon periodic be-
havior (e.g., speed measurement activated every 500
ms); therefore, in the domain of embedded control soft-
ware, modular forms of periodic behavior are essential
patterns to base more complex descriptions on. For a
component with a very basic communication scheme,
its communication schedule can be defined indepen-
dently for all its ports. A standard communication

behavior consists of repeatedly performing an interac-
tion; the delay between those equidistant interactions is
calledperiod.

However, besides this timing aspect, additional func-
tional aspects must be considered when describing
those patterns, especially the distinction between event-
based and state-based communication paradigms dis-
cussed in Subsection 2.2. This functional dimension
is important since it does influence the obligations of
either systems and environment established by a sched-
ule, as discussed in Subsection 2.2.

While event input and state output signals offer guar-
antees about the signals consumed or produced without
imposing requirements about the environment, state in-
put and event output signals require the environment to
produce or consume signals in time. Thus, the former
can be understood as optional obligations to interact,
while the later are obligatory obligations to interact.

Figure 6 shows the formalization of these kinds of
signal schedules. The modulesπ in the left-hand side
describes the obligatory case. The corresponding au-
tomaton uses a clock variablecs to formalize the timing
conditions defined by the schedule. Location`s char-
acterizes the state prior to the reception of a signal; lo-
cations´ characterizes the state when a signal has been
exchanged. Locatioǹs is both an entry and an exit lo-
cation as well.

The transition from`s to s´—labeled “: s :”—
corresponds to the exchange of a signal at time0. The
transition froms´ to `s—labeled “cs = π :: c′

s = 0”—
marks the end of the current period and the beginning
of the next. Note that this formalization states that the
exchange must take place at the defined time points: as
`s restrictscs to 0, the corresponding transitionmustbe
taken, unless the signal schedule is aborted. Ascs = 0
is entry and exit condition, the schedule is started at
time0 and may be aborted at any timen×π for n ∈ N.

The right-hand side of Figure 6 shows the formaliza-

5



sπ

start end`s

cs ≤ π

cs = 0 cs = 0

s´

cs = π::
c's = 0

:s:

cs = 0

sπ

start end`s

cs ≤ π

cs = 0 cs = 0

s´

cs = π::
c's = 0

cs = 0
:s:

cs = π::c's = 0

c ≤ π

clock cs clock cs

Figure 6: Formalization of Schedules for Obligatory and Optional Signals

tion sπ of an optional obligation for signal exchange. In
contrast to modulesπ, an optional signal offers an ex-
change each period,but does not require the exchange
to be imposed on the environment. Therefore, compared
to obligatory schedule its formalization allows the envi-
ronment to ignore the interaction by means of a weak-
ened invariantcs ≤ π, while the synchronization tran-
sition is strengthened tocs = 0 : s :. Furthermore,
a feedback transition in locatioǹs with pre-condition
cs = π, resetting the clock variable (c′

s = 0) is added.
By using several transitions from̀s to s´, each using

a different synchronization label as in the basic mod-
ule {s1, . . . , sn} of Figure 5, the exchange of signals
with distinct values communicated over a single port
is formalized. Thus, by means of obligatory and op-
tional schedules, state input and event output as well as
event input and state output signals can be adequately
described: a state input signal corresponds to a oblig-
atory schedule, as does a event output signal; symmet-
rically, a state output signal corresponds to an optional
schedule, as does an event input signal.

4 Analyzing Obligations

By explicitly describing the interaction obligations of a
component, we can check whether the interactions of
two components are compatible, or whether the obli-
gations imposed on a system are ensured by the inter-
actions of its components. To that end, the notion of
compatibilityof interface descriptions is introduced, to
detect possible loss or lack of signals when composing
components to form systems.

Intuitively, by means of compatibility we want to en-
sure that no signal is lacking or lost when exchanged
between a component and its environment. More for-
mally, if a signal interaction is imposed by a compo-
nent, it must not be rejected by the environment and
vice versa. Obviously, the schedules introduced in Sub-
section 3 are generally not enabled to accept any sig-
nal at any time: for some states and signals, no tran-
sitions with a corresponding synchronization labels are
enabled; thus the exchange of those signals is blocked.

To check for compatibility of components, we com-
pose their corresponding schedules in parallel and
check whether the combined schedules may lead to a
terminating (i.e., dead-lock) state. Figure 7 illustrates
this for the case of a state signals used both as an input
signal with a period of100 and as an output signal with
a period of200. Composing their schedules—shown in
the left-hand side—in parallel with synchronization on
s-transitions, leads to the behavior shown in the right-
hand side, depicting only the reachable states. Dur-
ing execution, the combined timed automata reaches
a deadlock at time point100 while the receiver is in
locatioǹ s1 with c1 = 0 restricting any further delay,
the sender is in locations2́ with c2 = 100. Thus, the
only transition leaving this combined state—depicted in
gray—is not enabled, leading to a deadlock.

Thus, a collection of interface descriptions is con-
sidered incompatible if their parallel composition may
deadlock. While in an asynchronous implementation—
as found, e.g., in embedded control networks imple-
mentation via CAN and OSEK—deadlock does not
occur, it corresponds to the lack or loss of signal.
Correspondingly, compositional compatibility can be

6



`s1

c1 ≤ 100s1´

c1 = 100::
c'1 = 0

:s:

c1 = 0

`s2

c2 ≤ 200s2´

c2 = 200::
c'2 = 0

c2 = 0
:s:

c2 = 200::c'2 = 0

c2 ≤ 200

c1 = 100::
c'1 = 0

`s1 s2´

`s1`s2

s1´ s2´

:s:

c1 = 0,
c2 ≤ 200

c1 ≤ 100,
c2 ≤ 200

c1 = 0,
c2 ≤ 200

c2 = 200::
c'2 = 0

Figure 7: Incompatible Signal Schedules

rephrase as a question of reachability (i.e., reaching a
deadlock state), making it accessible to standard model
checking procedures.

Based on the kind of deadlock state, furthermore
the class of the error can be identified: if the sender
is blocked from performing its synchronized action,
loss of event occurs in an asynchronous implementa-
tion; symmetrically, blocking the receiver corresponds
to lack of data. In the example in Figure 7, lack of signal
s is detected, assuming thats is a state signal. As, sym-
metrically the schedules also describe an event output
signal with period100 and an event input signal with
period200, under the assumption thats is an event sig-
nal, the loss signals is detected.

5 Interface Testing

In the preceding sections different abstraction levels
for modeling interfaces of components are described.
Furthermore a notion of compatibility was introduced
which allows to check the consistency of a composition
of components for untimed and timed communication
models. But beyond checking the compatibility of inter-
face specifications of different components, it must be
shown that the implemented system in form of the de-
ployed components indeed satisfies its specification. In
this section we illustrate how the conformance of com-
ponent realizations to their specifications can be estab-
lished by tests.

Usually, distributed embedded systems use some
kind of bus for communication between different ECUs.
In automotive systems most commonly the CAN bus is
used, which allows state as well as event communica-
tion. In such a configuration, it is possible to add an

observer to the realized system without changing the
communication behavior of a component. So for ex-
ample the componentsA and B of Figure 2 may be
realized by two separate ECUs as depicted in Figure 8,
extended by an additional observer.

Using this extension, the additional observer compo-
nent monitors the communication betweenA and B.
As the specification is usually more abstract than the
technical realization, an abstractor has to be used to in-
terpret the observed technical signals on the abstraction
level of the specification. In case of CAN, the signals,
specifically coded and packed into messages, have to be
unpacked and decoded appropriately.

Using this form of abstraction, the observed commu-
nication can be used to evaluate the current mode of the
observed componentsA andB. As explained in Sec-
tion 2 the mode of an component can be deduced from
the observed environment state signals. The current
mode of a component determines the actual communi-
cation obligations. As the communication betweenA
andB is also observed, the evaluator can establish if the
communication is conform to the specification; e.g., if a
state signal is not observed whileA is in a mode where
it must provide that signal, a violation of the specifica-

Bus

Observer

Abstractor

Evaluator

Figure 8: Observer for realized systems

7



tion by the implementation is detected.
The sketched technique for testing the conformance

of a specification and its realization can be easily added
into existing testing environments. As the observer
doesn’t influence the system itself, it is reasonable to
add this observer component while the standard tests of
a system take place.

One problem with such “piggy backed” tests is that
it is not certain that sufficient test coverage has been
reached. To determine coverage, the evaluator can log
the modes which were reached while executing a given
test case. Then, mode coverage can be computed and
thus the tester is informed, which modes are not reached
within a test case. Based on the modes, an abstract test
scenario for reaching a certain mode can also be com-
puted, using, e.g., model checking techniques exploit-
ing the model of Section 3.

As mentioned before, in contrast to modes, states
may lead to nondeterminism on the level of commu-
nication obligations. The evaluator has no knowledge
about the current internal state of a component, but it
can approximate the set of states, which may hold at a
given time. Based upon this set the evaluator can check
if at least the communication obligation of one state is
fulfilled or violated.

While we used these testing techniques successfully
in practice, they have several limitations. In particular,
the communication between two components has to be
observable. This is a problem if the relevant communi-
cation takes place within a single ECU. Another limi-
tation is that the evaluator may need some time to syn-
chronize its local mode or state model with the system
by inferring state information from bus communication
at the start of a test; during this time, of course, the
evaluator may pass no verdicts. However, the described
techniques can be adapted to most situations and lead to
highly automated and cost-efficient tests.

6 Conclusion

This paper introduced a methodological approach to
ensure the compatibility of embedded software com-
ponents. Behavioral interface descriptions, notions of
compatibility and refinement have been investigated in
approaches like [1], or [3], however focusing on block-
ing communication in general. In contrast, here we fo-
cus on the methodical implications of modeling com-
munication obligations, distinguish between event- and
signal-based communication, and avoidance of lack or

loss of signals.
For practical use, the presented concepts have been

formalized and tool support is under development; first
case studies in the domain of body electronics have
demonstrated the basic feasibility of the presented ap-
proach. Obviously, there are many areas for improve-
ment: Depending on the application domain, the con-
cept of modes can be detailed and systematized; the
communication schedules can be extended with mech-
anisms for communication over unreliable media; fur-
thermore concepts for test case generation in addition
to coverage measurement should be included.

References

[1] Luca de Alfaro and Thomas A. Henzinger. Inter-
face automata. InEuropean Software Engineering
Conference/ACM SIGSOFT Foundations of Soft-
ware Engineering, pages 109–120, 2001.

[2] Luca de Alfaro and Thomas A. Henzinger. Inter-
face theories for component-based design. InPro-
ceedings of EMSOFT 2001, LNCS 2211, 2001.

[3] Luca de Alfaro, Thomas A. Henzinger, and Mar-
iëlle Stoelinga. Timed interfaces. InEMSOFT Em-
bedded Software, pages 108–122, 2002.

[4] Harald Heinecke, Klaus-Peter Schnelle, Helmut
Fennel, Jürgen Bortolazzi, Lennart Lundh, Jean
Leflour, Jean-Luc Maté, Kenji Nishikawa, and
Thomas Scharnhorst. AUTomotive Open System
ARchitecture - An Industry-Wide Initiative to Man-
age the Complexity of Emerging Automotive E/E-
Architectures. Whitepaper, www.autosar.org, 2004.

[5] Thomas A. Henzinger. Masaccio: A Formal Model
for Embedded Components. InProceeding of the
First International IFIP Conference of Theoretical
Computer Science, pages 549–563. Springer, 2000.
LNCS 1872.

[6] Bernhard Schätz. Interface descriptions for embed-
ded systems. InProc. 3rd Workshop on Object-
oriented Modeling of Embeddded Real-Time Sys-
tems (OMER’05), Paderborn, 2005.

[7] Thurner et al. Das Projekt EAST-EEA – Eine
middlewarebasierte Softwarearchitektur für vernet-
zte Kfz-Steuergeräte. InVDI-Kongress Elektronik
im Kraftfahrzeug, number 1789 in VDI Berichte,
Baden-Baden, 2003.

8


	Introduction
	Communication Obligations
	Compatibility
	Static Obligations
	Mode-dependent Obligations
	State-dependent Obligations

	Timed Obligations
	Interaction Patterns
	Signal Schedules

	Analyzing Obligations
	Interface Testing
	Conclusion

