Modeling and Validation: AUTOFOCUS and
Quest

Oscar Slotosch*

Abstract

We describe the graphical description techniques, their underlaying
semantic and the validation techniques that have been applied to the
FM99 example; furthermore we sketch the model and discuss the vali-
dation results we have obtained. AuToFocus is the modeling tool, the
Quest environment connects the model to a broad spectrum of validation
tools, including model checkers (SMV, SATQ), theorem provers (VSE),
and test tools (CTE). The original contribution, further publications, and
AvutoFocus can be downloaded from http://autofocus.in.tum.de.

1 Modeling Technique

AvutoFocus offers a comprehensive set of graphical notations to specify dis-
tributed systems from different points of view. All description techniques are
hierarchic and refer to a common system model. System Structure Diagrams
(SSDs) describe the components of the system, their interfaces, and their con-
nections. Components can be refined by assigning a substructure (again given
as an SSD) to them; they can also refer to a behaviour description in the form
of a state transition diagram (see below). Functional Data Type Definitions
(DTDs) describe the types, values and functions the model is based on. Pat-
tern matching can be used to define functions. The behaviour of components is
described using State Transition Diagrams (STDs) that refer to the inter-
face of components and operate on the data specified in the DTDs. Transitions
consist of input patterns, preconditions, output patterns, and actions (to update
local variables). Interactions between components of the system are described
using Extended Event Traces (EETs). EETs show interaction sequences of
components. EETs are used to capture requirements, to document simulation
runs, to represent test cases, and to visualize counter-examples obtained from
model checking.

The formal semantic basis of the descriptions is a mathematical model
consisting of time-synchronously operating components with a single element
buffers for communication. Thus neither micro steps, nor instantaneous feed-
back are needed. This simple semantics is well suited for the verification task
and forms a clear basis for the software engineering process.

*We thank TU Munich, and German BSI for financial support, and the whole development
team, especially Peter Braun, Franz Huber, Heiko Létzbeyer, and Bernhard Schitz. For
comments on this paper we thank Ingolf Kriiger, Robert Sandner, and Bernhard Schéitz.



2 Model of the Banking System

Our model for the banking system comprises two tills that are connected to
a central banking system via insecure communication channels. The central
system is modeled with two drivers for the channels and a database, consisting
of two parallel processes to read data from the clients’ accounts. The DTDs
contain descriptions of the data structure for credit cards. Cards store the pin
code, the account number, the date of the last withdrawal, and the amount
that has been withdrawn at this day. Furthermore, types for the interactions
between users and tills, and messages to describe transactions are defined. The
tills gather the required information, and send it in the form of a composite
transaction, to the central. If the connections are down sending is repeated
until an acknowledge signal is received. The decision whether the client can
withdraw money or not is modelled nondeterministically and can be refined
later. The STDs of the till, the connections, and the processes are reused for
both tills, connections, and processes, to show that the model can easily be
extended with additional tills.

3 Validation Techniques

Several validation techniques can be applied to the model. Consistency checks
allow us to express static consistency of the different views. This enables de-
tection of modeling errors like type errors, or inconsistencies between different
abstraction levels and different views. The graphical simulation allows us to
validate the systems behaviour. Consistency checks and simulation are the main
features to improve the adequacy of the (formal) model. A simple temporal logic
is used to describe safety critical system properties. These properties can be
model checked using SMV and bounded model checked using SATO. For
larger or infinite systems abstraction techniques can be applied to reduce
complexity. For each property a proof obligation is generated ensuring that
the property is true in the concrete system, provided it holds in the abstract
system. These proof obligations and other properties can be verified using the
interactive theorem prover VSE (Verification Support Environment). Sev-
eral specification based test case generation methods can be applied to
test implementations of the system or a hardware realization. Some of those
methods are: classification of variables using the classification tree editor CTE, a
transition tour that covers all transitions of an STD, and systematic approaches
to testing the combination of several units.

4 Validation Results

We corrected several formalization and modelling errors that have been found
using consistency checks and simulation. We model checked the property that
the driver drives the connection correctly. Applying bounded model checking,
we proved that invalid cards are rejected. The complete model was checked
abstracting from the data types. Counter-examples to negated properties were
used as test cases, for example to show how money can be withdrawn.



