
Model-Based Software Engineering and Ada:
Synergy for the Development of Safety-Critical Systems✹✹✹✹

Andree Blotz, Franz Huber, Heiko Lötzbeyer,
Alexander Pretschner, Oscar Slotosch, Hans-Peter Zängerl

Andree.Blotz@m.eads.net
{ loetzbey | pretschn} @in.tum.de

{ huber | slotosch | zaengerl} @validas.de

1 Introduction
Software development approaches that are based on modeling a system before performing the actual
implementation work have a long history in computing. Among the first ones were data(base) modeling
approaches using the Entity/Relationship model and similar other techniques. During further
development, modeling techniques became increasingly complete, covering not only data aspects, but
also structural/topological and behavioral aspects of systems. Typical representatives of such full-scale
modeling approaches are structured methods, such as Structured Analysis & Design, or object-oriented
methods like the UML [2].

Models created in such a modeling language can serve different purposes. They can be regarded as a
concise, much more formal version of otherwise informally given system requirements. In this view,
they serve as a precise guideline for the developers that perform the actual implementation work, and
can furthermore be used as a basis for testing the conformance of the implementation with the
requirements.

If a modeling language is rich enough to allow the creation of complete models (models that encompass
all aspects of a system on an abstract, implementation-independent level), another purpose of such
models is obvious: The created models can not only be used to precisely capture the requirements upon
the system, but to describe the system in detail, reaching up to a complete description of all aspects of
the system. From such a complete description, it is basically possible (although not always feasible or
desired in practice) to generate a complete system implementation automatically. An important
advantage of such a model-based approach is (programming) language independence: Modeling
languages are usually driven by the application domain that they are used in and provide domain-
oriented abstractions to describe systems (components, data entities, states, state transitions, etc.). In
contrast, typical programming languages such as Ada or C are general-purpose languages, providing
language elements that reflect the underlying machine model of sequential execution of statements.
Using code generation techniques to create implementations, such complete models as described
previously can be transformed into implementations in arbitrary programming languages.

✹ The work presented in this paper is part of the project MOBASIS, a joint research activity of EADS-M, TU München
(Institut für Informatik), and Validas AG. MOBASIS („Modellbasierte Entwicklungsmethoden für sicherheitskritische
Systeme“) is sponsored within the scope of the Bavarian „Luftfahrtforschungs- und -technologieprogramm 2000–2003“.

Models are abstractions of a system and are thus particularly less “cluttered” than an implementation,
for instance, in C. Therefore, it is much more promising for models than for implementations to apply
validation techniques, such as—covering different levels of formality—prototyping and simulation [4],
test case/test sequence generation [12], or model checking [7]. If the elements of a modeling language
have been chosen carefully enough to keep the modeling language simple, yet complete, it is feasible to
provide a sufficiently streamlined formal semantics that even allows the application of rigid formal
validation/verification techniques [3].

In contrast, in the development of safety-critical software, processes and quality standards are well-
established that are based on the usage of programming languages such as Ada to implement systems,
and not on models in arbitrary modeling languages. The MC/DC coverage criterion, for instance, which
is required by RTCA/DO-178B [9] for testing safety-critical systems, is defined for programming
languages, and not for behavioral models (state diagrams), e.g., in UML or AutoFocus [5].

Thus, the core idea presented in this paper consists in combining the specific strengths and acceptance
criteria of both worlds, on the one hand, application domain-oriented, abstract models, and, on the other
hand, a well-accepted Ada-based implementation and test setting, by code generation and test case
transformation techniques. Another important issue in this context, gaining “ trust” into model- and
code generation-based techniques can be tackled to a certain extent in this approach as well.

Structure of this Paper
This paper is organized as follows: We first introduce a simple, yet powerful modeling language—the
AutoFocus modeling language & framework; then we highlight some of the features of our model-
based validation toolset. Afterwards, we introduce an example application, the leading edge system (the
LES), which is subsequently used to demonstrate a quick walkthrough of our code and test case
generation techniques. We sketch how these techniques can be combined in a round-trip fashion into a
both model-based and program-based process to benefit from the advantages of both approaches.
Finally, we summarize and evaluate our current results and comment on future work to be done in this
context.

2 AutoFocus Modeling Framework
A modeling language—quite similar to a programming language—comprises a set of concepts that are
used to describe systems. In case of programming languages, these concepts are typically statements,
blocks, procedures, functions, and many more. For the AutoFocus [5] modeling language and toolset,
these concepts are based on the idea of a system being made up of a network of communicating
components and are defined in a so-called meta-model (i.e., a model that describes how actual models
can be constructed). A simplified representation of the AutoFocus meta-model is shown in Fig. 1, using
the UML class diagram notation as the meta-language. The AutoFocus modeling language has been
under development at TU München since 1995, specially aimed at the development of embedded
systems, and shares some concepts with UML/RT. AutoFocus has been chosen as the modeling
platform for the MOBASIS project.

2.1 AutoFocus Modeling Concepts
As shown in Fig. 1, the core modeling concepts of AutoFocus, i.e., the core elements in its meta-model
are:

Components. They are the main building blocks for systems. Components encapsulate data, internal
structure, and behavior. Components can communicate with their environment via well-defined
interfaces. Components are concurrent: Each one of them runs sequentially; however, in a set of
components, each component’s run is independent of the other components’ runs. A global system

clock drives all components in a system, and each component carries out one operation (transition, see
below) per system clock cycle. Components can be hierarchically structured, i.e., consist of a set of
communicating sub-components.

Component

SubComponents

Channel

ControlState

Transition

InputPort OutputPort

{ disjoint }

Pattern

OutputPattern

InputPattern

PreCondition

PostCondition

DataTypeDataElement

Port
0..*

1..*0..*
0..*

0..*
0..*

0..*

0..*

0..*

0..2

0..*

2

1

2

1
1

1..*

1

1

1

0..*

0..*

0..*

Connector

0..*

0..2

0..* 1

10..*

Predicates over the
component's encapsulated
data elements, not treated
here in detail

Expression constructed
according to the rules
for the associated data type,
not treated here in detail

At most two channels can
be connected to a port:
One to the environment of a
component and one to its
internal sub-structure

Fig. 1: Basic Modeling Concepts of AutoFocus: The Meta-Model

Data types. They define the data structures used by components. Data types are constructed from a set
of basic types (such as integer or float) and a set of constructors, e.g., for record and variant types.
Data. Data elements are encapsulated by a component and provide a means to store persistent state
information inside a component. Data elements can be regarded as typed state variables.
Ports. They are a component’s means of communicating with its environment. Components read data
on input ports and send data on output ports. Ports are named and typed, allowing only specific kinds of
values to be sent/received on them. We distinguish two kinds of ports: so-called immediate ports,
which are visually represented as small, diamond-shaped rectangles, and delayed ports (the default
variant), which are rendered as small circles. Immediate ports pass along the value that is written to
them immediately, that is, within the same system clock cycle, whereas delayed ports propagate values
written to them not before the next system clock cycle.
Channels. They connect component ports. Channels are unidirectional, named, and typed, and they
define the communication structure (topology) of a system.
Control States and Transitions. These elements define the control state space and the flow of control
inside a component. Each transition connects two distinct controls states (or one control state with
itself, in case of a loop transition) and carries a set of four annotations determining its firing conditions
(its “enabledness”):

• guards and assignments, which are predicates over the data elements of the component to be
fulfilled before and after the transition, respectively, and

• input and output patterns, determining which values must be available on the component’s
input ports to fire the transition and which values are then written to the output ports.

These concepts are sufficient to describe a large class of systems. Developers create the model of an
actual system using these concepts; technically speaking, an actual system model is an instance of this
meta-model. The complete meta-model, together with a set of additional conditions related to

consistency and completeness of models, describes the set of all possible, well-formed models that can
be created.

2.2 AutoFocus Views and Notations
Developers do not create and manipulate models as a whole, but by picking only specific parts of them,
which are of interest during particular development activities. These parts, usually closely related with
each other, make up the views of the system. For instance, the structural view in AutoFocus considers
only elements from the meta-model describing the interface of components and their interconnection.

Component
SubComponents

Channel
ControlState

Transition

InputPort
OutputPort

{ disjoint }

Pattern

OutputPattern

InputPattern

PreCondition

PostCondition

DataType

DataElement

Port

0..*

1..*

0..* 0..*

0..*
0..*

0..*

0..*

0..*0..2

0..*

2

1

2

1 1

1..*

1

1

1

0..*0..*

0..*

Connector

0..*

0..2

0..*

1

1

0..*

SystemClock

ProductionCellController

SystemTime: int

r: RobotOp

rs: RobotStatus

p1: PressStatus

p1: PressOp p2: PressOp t: TableOp

Part of the meta-model
related to structural aspects

Graphical notation
describing structure: SSD

Fig. 2: Structural Parts of the Meta-Model and the Notation representing them

To manipulate elements of these views they must be represented visually to developers. In AutoFocus,
mainly graphical notations are used for that purpose; these notations are introduced in more detail by
our application example, the LES. The notations do not represent self-contained documents; instead
they are a mere visualization of a clipping from the complete model. Fig. 2 shows an example for this
relationship between a set of related elements from the meta-model (inside the shaded area) and their
visual, diagrammatic representation. In this example, structural aspects of the model are covered, and
the notation used to visually represent them is called System Structure Diagrams (SSDs). Examples for
SSDs are given in the presentation of the LES in Fig. 5 and in Fig. 6. The visual notation used to
represent the state-based aspects of a system (control states, transitions) is called State Transition
Diagrams (STDs) and is shown in Fig. 7. The data type-related aspects of a system are defined using
textual Data Type Definitions (DTDs); in Section 5.2 we give an example for a DTD. An additional
graphical notation used to visualize runs of components over time is called Extended Event Traces
(EETs) and is similar to UML sequence diagrams [2] and ITU-standardized Message Sequence Charts
(MSCs) [6]. EETs play an important role in test case generation. Fig. 8 shows an example of an EET.

3 Validation Framework
Validation of models created in AutoFocus is the main goal of the validation framework. A large
number of validation approaches and associated tools are available for that purpose. Usually, validation
tools (such as model checkers or theorem provers) are standalone tools and are not directly connected
to modeling or engineering tools. Therefore, one of the main purposes of the “Validas Validator” , the
main tool within the validation framework, is to provide a common environment, integrating many
commercial and research validation and verification tools by providing generators and translators that
allow AutoFocus models to be analyzed by validation tools appropriate for the specific goal of the
analysis. Basically, the process works by translating AutoFocus models into the input format of the
selected validation tool. Validation results are then retranslated into AutoFocus models after analysis, if
this is possible (and desired). In addition to these third-party validation tools, efficient code generators,
model metrics and simple consistency checks are part of the Validator. The construction of the
validation framework has been initiated by the BSI (Bundesamt für Sicherheit in der
Informationstechnik) within the Project Quest [10]. The architecture is open, such that new tools can be
easily connected.

3.1 Validation Techniques
The available validation techniques cover a broad spectrum, ranging from formal theorem proving to
simple and efficient rule checking for consistency checks:

• Theorem proving (VSE Tool)
• Abstraction techniques (Validator)
• Model checking (SMV, NuSMV, Cadence SMV)
• Bounded model checking with propositional solvers (SATO, Chaff)
• Test sequence generation using constraint solvers and backtracking (ECLIPSE)
• Determinism checking (Validator)
• OCL constraint checking (Validator)
• Simulation of executable models (AutoFocus)

For validation of models, sequences (represented as EETs) are the core concept. They can be used as
test sequences in several ways: They are generated by some of the aforementioned tools in the
framework and can be exported textually for testing the conformance between model and code
(,,regression test’ ’) automatically or to measure the coverage of the code from the generated sequences.

3.2 Test Case Generation
Testing and simulation continue to constitute the most popular validation and verification techniques.
Their preeminent role in this field is basically due to a lack of serious alternatives: Theorem provers
still require intense manual interaction by highly skilled engineers, and the application of push-button
approaches like model checking is usually restricted to small or brutally abstracted systems. With
suitable ad-hoc abstractions, model checking is successfully deployed for protocol verification, and
engineers have been able to find general abstractions in the field of circuit verification—yet, a general
abstraction framework for the verification of (hybrid) systems remains to be found. Obviously, the
problem is rooted in the fact that abstractions are domain- and application-specific.

In addition to these rather technical issues, verification with theorem provers or model checkers is
usually performed on models, or abstractions, of a system, and not on the code. While verifying models
is always a useful activity—regardless of whether the models in question have been created before or
after the system—validating a system with respect to its requirements has, nonetheless, to be done on
the actual system.

For reasons that will be clarified in the sequel, we concentrate on test case specifications
(formalizations of a test objective) that are of the form “drive the system into a certain state q” . Since
our focus is on reactive rather than transformative systems, a corresponding test case actually is a test
sequence of I/O pairs. The problem of generating test cases, or sequences, respectively, thus amounts to
searching a path through a (concurrent) program, and the information one is interested in is finding
those I/O pairs that lead to the specified state q.

Since we consider the continuous parts of the system to be transformed from differential into difference
equations, we get a discrete but infinite state space, and the system may be described by a set of
equations. Atomic components translate into an implication of the sort “ if the transition’s guard holds,
then a step from one state to another may be performed”. Composed components then consist of a
conjunction of all the defining equations for its subcomponents, by turning internal channels into new
local variables. This is a (constraint) logic program, and this is almost all we need, both for simulation
and test case generation: by giving values to all top level input channels, the whole system performs a
step, yielding new values for control and data states, which are then, in turn, used as starting points for
a new step of the system, with new inputs. If the guard contains arbitrary equations over reals (which is
usually the case for hybrid systems), then we need constraint solvers in addition to logic programming
in order to cope with these.

Thus far, we have described a simulation code generator for CLP. In fact, this is already a test case
generator, since the concept of input and output variables does not exist in this paradigm—if no values
are assigned to some variables, the LP engine computes them. For the generation of test sequences, we
partially specify the desired destination state of the system, and make the LP engine do the work. The
result of the symbolic execution of the program is, wherever necessary, a binding of all variables, and
in particular those variables that occur in the input and output streams. Obviously, the state space
usually is far too large for exhaustive exploration, which is why, in addition to elaborate heuristic
search algorithms [8], we (automatically) use constraints for a more efficient generation procedure:
Parts of the search tree may be pruned in an a-priori manner, shifting the generate-and-test paradigm
into constrain-and-generate. If this is still not enough for an efficient computation of test cases, the user
can establish environmental and efficiency constraints. Note that we see our approach as
complementary and not substituting with respect to model checking: We deliberately drop the
completeness requirement.

In any case, we now have described (and actually implemented) a system that is able to find a sequence
of I/O pairs that drive a system into our specified state q. By comparing actual outputs with desired
ones, we can validate models, and with adequate transformations of the test sequences from the level of
models to the level of source code, also the system itself, with an automatic assessment of correctness
of the system’s outputs. This concretization is not a trivial task. So far, we are only able to perform this
in an ad-hoc manner, and automatization is the subject of current work. However, drivers for generated
Ada code may be generated automatically.

Is finding an I/O sequence leading to q enough for testing systems? Clearly, this kind of “existential”
test objectives comprises structural testing, and it is a good debugging aid when designing the model.
Furthermore, scenarios from the requirements capture activities also constitute this kind of existential
test objectives. However, sometimes “universal” properties like invariance are also established during
requirements capture. These properties have the bitter taste of not being testable, since testing activities
are finite by definition. For small systems, model checking or theorem proving may be suitable for
proving such properties, but again, these techniques can rarely be applied to actual embedded systems.
These properties also have to be tested, and they often constitute safety-critical parts of a specification.
We will not dive deeply into this, but the idea to cope with this kind of properties is to first negate
them. This yields an existential property: There is a path that leads to a state p violating the invariance.

By trying to reach this violating state, we get as “close” as possible to it. Obviously, this requires the
notion of a suitable discrete topology, which is difficult to find, but empirically possible [11]. The
motivation here is the same as for limit/equivalence class testing: Errors are likely to be found at the
boundaries of “ intervals” , and we define the boundaries to be the “ rim” of the set of all reachable states.
An empirical assessment of whether or not this is a good idea is the subject of current work.

4 Case Study: The Leading Edge System (LES)
The application example chosen for the MOBASIS project is a fictitious Leading Edge System (LES)
of a modern fighter jet. It was chosen so as to comprise all the essential features of a modern aerospace
flight control system while at the same time it is not diffused by its complexity. Within MOBASIS, this
example serves as one of the benchmarks to evaluate the developed techniques and tools for their
practical applicability.

4.1 Overview of the LES
Leading Edge Systems are so-called secondary control surfaces which are used to increase lift during
take-off and landing. They are operated either manually by the pilot or by the autopilot. In instable
fighter aircraft the LES is used to stabilize the aircraft along the lateral direction at high incidence
angles. Therefore they are permanently used and operated by the Flight Control System (FCS) as a
function of incidence angle (AoA) and Mach number. FCS controllers use the pilot reference value
from inceptors and measured physical quantities to compute the actuator demands. Now that these
demands are safety-critical with failure probabilities less than 10-7..10-9 per flight hour, the FCS is
typically not only designed in a multiple redundant (e.g. quadruplex) way but according to the highest
quality assurance and certification measures. The use of Ada with its built-in safety features like, e.g.,
strong typing and controlled interfaces is therefore mandatory for most aerospace and defense projects.

Fig. 3: The Leading Edge System (LES) of an Example Fighter Jet with Slats at the Delta Wing

The LES in this setting therefore implements the following reduced characteristics:

• a sensor voting plane for the incidence angle voting
• a control law calculation including the support of a Ground Support Equipment (GSE)
• a demand voting plane reduced to the LES demand voting
• the actuator loop closure
• the initial built-in test (IBIT)
• a model for the mechanical, hydraulic and electrical part of the LES as far as failure injection is

concerned.

The software level criticality of an isolated LES is regarded as mission critical and as software level B
according to RTCA/DO-178B. However, since software segregation in the present FCCs is not
implemented and the FCCs contain safety critical software of level A type, the whole software within
the FCCs has to be developed according to this highest level A.

The redundancy management will be implemented as quadruplex, and a simplified consolidation
algorithm calculates the mean value from the two middle values, after appropriate sorting of the four
values. In a triplex system or degraded quadruplex system the voter chooses the middle value after
sorting.

The sensor voting plane consolidates the input value to the control laws, i.e., the consolidated Angle of
Attack (AoA). The AoA is then used by the control law (Fig. 4) to calculate the corresponding LES
slats demand. Its function is mainly to provide a smooth position achievement with limited speed,
which is implemented via a rate limiter in the control law design. Furthermore, if Ground Support
Equipment (GSE) is enabled the actuator demand output is replaced by the analog input from the GSE.
On the output side of the Control Law there is another demand voting plane which consolidates the
demand before insertion into the slat position loop closure.

Hysteresis Limiter Gain
Limited

Integrator
Rate

Limiter
-

+
LE Slat

 Demand
Consolidated

Alpha

Initialization

Limiter

Fig. 4: The Leading Edge Control Law in a Simplified Version

The actuator loop closure then uses the consolidated output to drive electro hydraulic servo valves.
These valves drive the main control valves which control the pressurized hydraulic liquid, which itself
drives the ram. The rams then are directly coupled to the control surfaces. The control of these
hydraulic actuators involves the ram position as well as the position of the valves. The latter control
loop is therefore called inner control loop while the former is the outer control loop. Typically, the loop
closures are performed at different frequency rates. Both together with the actuators are also called the
actuation system. The design of the solenoids must be such that if one of the lanes drives its solenoid
against the work of the others that the movement to the true reference position is not prevented. Finally,
the build-in test (BIT) performs pre-flight checks, actuator movement checks, and a first line check.

4.2 LES-Model in AutoFocus
Summing up the software-related aspects of the previously given description of the LES, three core
functional areas can be identified:

• the control laws,
• the quadruplex redundancy control, and
• the self test (IBIT).

Although an extensive self test is required for each safety-critical function, we have decided to
concentrate on the other two aspects for modeling the system within the MOBASIS project, as we
believe that the self test will influence the complexity of the running system only marginally compared
to the influence of a more complex redundancy control. The complete AutoFocus model includes four
communicating flight control computers, control laws and a sensor voting plane for voting data from
the incidence angle sensor. Due to the complexity of the LES model that has been created in

AutoFocus, and due to the limited space available in this paper, we can only shed light on a few of its
most interesting aspects, which are briefly discussed in the following.

The whole LES system consists of three control laws: The LES control law computes the desired slat
position, the slat position control law controls actual slat positions and the DDV control law controls
the opening and closing of the relevant valves. Fig. 5 illustrates the system structure of the LES control
law.

Limiter1 Hysteresis Merge Limiter2
 Limited
 Int
egrator

Rate LimiterGain

Buffer

in data data data data data data data

regel_back:Floatinxe:Float

Fig. 5: LES Control Law as an AutoFocus Structure Diagram

The other control laws can be modeled in a similar fashion. Each block (“component”) is a function
that takes one or two input values and computes an appropriate output value that is transferred
immediately (angular ports) to the next block. Therefore, it takes only one cycle for an entering value
to be fully processed and emitted to the next control law via the output channel. The only delaying
component is the buffer, which stores the output of the limited integrator in the back loop.

In critical FCS applications redundancy control is a major issue. There are different levels of
redundancy. For the LES quadruplex redundancy is required. Quadruplex means that the system
consists of four FCCs and every sensor signal, intermediate value and actuator demand must be
monitored and voted. Fig. 6 shows the monitor/voter plane for the incidence angle sensor signal of one
FCC. The “splitter” transfers the value from one of four sensors to the other FCCs and to the monitor.
All other sensor values are received indirectly from the other FCCs via the channels “a2” to “a4” . The
monitor component monitors each signal and decides whether a lane should be activated or deactivated.
Internally, the monitor component contains a driver subcomponent for each lane (ports, respectively
channels v1 through v4) that activates or deactivates the respective lane.

Monitor Voter

Splitter

own:Float

sensored:

ownd

s2:Float

s3:Float

s4:Float

v1:Float

v2:Float

v3:Float

v4:Float

incidenceAngle

Fig. 6: Monitor/Voter Plane for Incidence Angle Sensor

The state transition diagram shown in Fig. 7 shows the behavioral specification of such a driver
component. Note that a lane is neither deactivated nor activated unless a certain number of faulty or
correct values have been processed and recorded by the driver, respectively.

transfer correct value

transfer faulty value

eliminate correct value

eliminate faulty value

lane active

lane inactive

maximal faulty values count reached

maximal correct values count reached

Fig. 7: Specification of a Lane Driver

5 From Model to Code
The LES model, of which we have just shown a few aspects, is a complete model, which means that it
comprises all the necessary information to fully describe each component including its complete
behavior. This completeness feature is on the one hand a property of the modeling concepts of
AutoFocus: Using all the available concepts in AutoFocus, developers are enabled to create such
complete, consistent, and therefore executable models. On the other hand, it is well possible during the
development process to create incomplete and contradictory models in AutoFocus. In fact, most of the
time during development, models are incomplete, because developers choose to concentrate on
specifying only some aspects of a system at a time, such as for instance the structure of a system,
leaving open other aspects at the same time, such as data types. AutoFocus provides an extensive set of
consistency and completeness checks, which are even user-extensible, to help developers resolve
inconsistencies and incompleteness of models. Once a model complies to all the necessary consistency
and completeness conditions, it is said to be executable, which means that a prototype can be generated
and executed within the simulation environment of AutoFocus. Exactly this precondition of
executability is also the precondition for the generation of program code from a model. The Validator
tool currently provides code generators for C, Java, and—implemented within MOBASIS—for an Ada-
subset. The Ada program code currently generated is—in our view—to be used mainly for additional,
program code-based validation activities; however, the ultimate goal in code generation is to generate
complete system implementations from models. Experiences with our highly optimizing C code
generator indicate that this goal should attainable for Ada as well.

5.1 Ada for Risk Class 1 Software
The reasons for using Ada, respectively the SPARK, in safety critical projects are twofold. On the non-
functional side EADS-M has a long tradition and extensive experience in the development of Ada
projects. Also, tools and processes are trimmed to the Ada language and, for some projects, the usage
of Ada is part of the customer or government requirements. On the functional side, Ada has many built-
in safety features like, e.g., not permitting to read and write outside the bounds of an array, strong
typing, modularity, simple syntax etc. Such features enhance reliability by providing readable and
maintainable programs. In addition, the SPARK [1] language has removed elements that would prevent
a program to be rigorously proven or would tremendously impede the process of verification and
validation. This, e.g., would be the case for the effect of goto statements on the control flow analysis.
But it should be kept in mind that SPARK is not just a safe subset of Ada but shares a common kernel
with Ada and has additional annotations for flow analysis and formal proof. Especially excluded from
the kernel are the Ada features for tasking, exceptions, generics and also access types, goto statements
and use package clauses. In general, most of the dynamic flexibility that was added to Ada95 had to be

excluded since high integrity software does not allow for dynamical processes once the system is
initialized, but requires the system to be deterministically defined at start up.

For the MOBASIS Ada code generator, we have chosen to adhere to a project-specific Ada subset from
EADS, similar to SPARK, for the first implementation. Future development, however, will use SPARK
Ada as reference subset. In the following we briefly describe the generation of Ada code from
AutoFocus SSDs, STDs and DTDs (see also Section 2.2).

5.2 Ada Code Generation from AutoFocus Models
The data-related aspects of AutoFocus models are based on data type definitions (DTDs) that allow
developers to define types, functions and constants in a fashion very similar to functional programming
languages such as Gofer or ML. For example:

 data� SensorVal� =� Defect� |� Busy� |� Ready(Float);�

defines the type SensorVal (within a package), together with the constants Defect, Busy and a
constructor function Ready� :� Float� ->� SensorVal. In addition, a partial selector function
ReadySel1� :� SensorVal� ->� Float is implicitly defined by the data declaration. Furthermore,
three discriminator functions: is_Defect,� is_Busy,� is_Ready� :� SensorVal� ->� Bool are
defined implicitly as well.

Additional user-specific functions and constants can be defined within the DTDs, as for instance

� � � � � fun� nextValue(last,Defect)� =� last�

� � � � � � |� � nextValue(last,Busy)� =� last�

� � � � � � |� � nextValue(last,Ready(x))� =� x;�

All definitions, constructor and selector functions, discriminator predicates, and user-specific functions
of such a DTD are generated into an Ada package. Each generated Ada package, as usual, is realized
by an Ada specification file declaring the publicly available functions of the package and an
implementation (body) file implementing these functions based on private (non-publicly accessible)
implementations of the data types. This principle of maximum encapsulation for the code generation
applies not only to the aforementioned data types, but also to all other AutoFocus model elements and
views.

AutoFocus SSDs describe the system structure and the communication flow between the components
(channels). Each SSD could be mapped into an Ada package with types for each subsystem. However,
for efficiency reasons we decided to flatten the system into atomic components and generate a simple
Ada package encompassing the system as a whole and one Ada package for each type of component.
Communication (i.e., data flow between component ports along channels) is implemented by a simple
copy function between the interface ports of the atomic components. A port can also be empty (if no
value was written to it in the current, respectively, previous clock cycle), so with each port a “data
present” flag is associated.

AutoFocus STDs describe the behavior of components. They are similarly encoded into packages with
a type for each component including a state variable, declarations of ports and local variables.
Furthermore there is a main procedure (“Do_Transition”) that executes the component (one
transition on each invocation). This method represents the semantics: according to the current state, all
possible transitions are checked and the first executable transition is executed. Since this function can
be quite complex (depending on the number of states and transitions in the STD), for each state and for
each transition separate helper functions can be generated (switched on or off in the generator settings)
to reduce the McCabe complexity of the generated code, however, for the price of an increase in the
number of generated modules.

5.3 Transformation of Model Tests to Program Tests
Now that we have briefly sketched how models are transformed into Ada code and thus into an
implementation in a programming language, we still have to describe how test cases on the model level
(test sequences, given by EETs) are transformed to the program level. For that purpose, we first have a
look at such an EET (Fig. 8), generated by a simulation of the LES model.

Limiter1 Hysteresis Merge Limiter2 Gain Limited IntegratorRate Limiter Buffer

incidenceAngle.10.0

data1.10.0

data2.10.0

data3.10.0

data4.10.0

data5.5.0

data6.5.0

slatdemand.5.0

incidenceAngle.10.0

data1.10.0

data2.10.0

data3.5.0

data4.5.0

data5.2.5

data6.7.5

slatdemand.7.5

regel_back.5.0

regel_back.7.5

Fig. 8: Part of a Model Test Case/Sequence (EET) from a LES Model Simulation

A test sequence given by such an EET is actually a test case on the model level for each of the
components involved in the EET. When creating a test sequence for a single one of these components,
we first have to isolate the component and the communication events it receives and sends from the rest
of the EET. This is basically done by a projection on the respective component’s axis in the EET. This
single component test sequence can now be transformed into a test for the generated code, where each
of the clock cycles (delimited by dashed horizontal lines) in the EET, including the incoming and
outgoing communication events, corresponds to an invocation of the main Do_Transition procedure
in the generated Ada code. Thus, a model-based test sequence delivers not only one, but a complete
series of test cases for the program code.

5.3.1 Relationships between Code Generation and Test Case Transformation
The relationship between the code generation mechanism and the transformation of model tests into
program tests is actually quite close. Not only does each test sequence correspond to a series of
program tests, even further, this relationship involves two important assumptions about the internal
state of the components and their Ada-based implementation as well:

First, an EET records a communication (input/output) sequence for the component involved, which is
well-sorted with respect to the system clock cycles. Since an EET does not reveal the internal state
(control state and data state) of the component (“black box view”), and since each input/output event in
the sequence is a result not only of the received input, but also of the current internal component state,

it is mandatory that the sequence of clock cycles is preserved when executing the resulting set of
program test cases on the generated code.

Second, an EET obviously has a starting point, the first clock cycle, where all communication begins. It
is our common interpretation (although differing interpretations are as well admissible) that the internal
component state at this starting point of an EET is the initial state (both for control state and for internal
data values) of the component.

Only with these two rules, a well-defined transformation of an EET test sequence into a series of
program tests is possible.

It is also worth mentioning that we are dealing with fundamentally different notions with respect to
unit-, subsystem-, and system-testing on the model level and on the program level: In the model world,
the units of interest for testing (or for test case generation) are, quite naturally, components. Therefore,
an isolated axis from an EET with input-/output events for only one component can be regarded as a
unit test for that component. As previously (Section 5.2) described, however, a model unit (i.e.,
component) is implemented by numerous program constructs in the generated Ada code, ranging from
the packages that encapsulate the component and state space properties down to atomic functions and
procedures that implement, for instance, a predicate for testing whether a given transition is enabled or
not, or a procedure that actually carries out all the state changes effected by that transition. Thus, what
is conceptually seen as a unit test on the model level, actually expands to a whole subsystem- or
integration-test on the program code level. Nevertheless, it is as well possible, using the data from the
model-based test cases, to drive unit tests on the code level: If, for instance, only one specific transition
predicate function is of interest for testing, it is possible—although not implemented at this time and
currently not planned to be realized—to scale down the generated program tests for that purpose.

5.3.2 Test Execution and Analysis
To actually let developers execute the described testing scheme using our tools, two different
approaches are available at this time, and a third one is currently being implemented. Fig. 9 gives a
schematic overview of these approaches.

validates

Model Model�Test�Case (EET)validates

Program�Code Test�Bed

Code�Generator
(Ada-Subset)

TDF�({inp?Val;}*{out!Val;}*)

TDF�Export

Test�Bed
Generator
(work in�progress)

TDF-Parser

„tdf2tb“
(Perl-Program)

validates

Model Model�Test�Case (EET)validates

Program�Code Test�Bed

Code�Generator
(Ada-Subset)

TDF�({inp?Val;}*{out!Val;}*)

TDF�Export

Test�Bed
Generator
(work in�progress)

TDF-Parser

„tdf2tb“
(Perl-Program)

Fig. 9: Available Options for Test Execution on Generated Ada Code

Similarly to the model, which is transformed into an Ada-based implementation by the code generator,
model test cases are transferred into program tests. The first two mentioned approaches are based on
exporting an EET into an intermediate text format, called TDF (short for Test Data Format). TDF files
contain one line for each execution step (i.e., clock cycle) of the system; this line consists of input and

output patterns (similar to patterns of transitions in STDs) that associate data values with the
component ports that they are read on (in case of input ports) or written to (in case of output ports):

{inp?val;}*{outp!val;}*�

TDF-based testing of a system can be done in two different ways: First, by directly feeding a TDF file
into the TDF parser, which can be generated as an add-on to the Ada code by the code generator. This
way, the generated Ada has its own, integrated testing engine. Second, a TDF file can be directly
converted into an Ada program that acts as a test bed for the component of interest in the generated
Ada code. This is done by “ tdf2tb” , a small Perl program implemented in MOBASIS. The third way to
transform a model test into a test bed program is currently being implemented; it directly converts the
relevant parts of an EET into an Ada test bed, without the necessity of using the TDF intermediate
format.

In any of the three cases, the actual testing of the program code is done by setting the input values of a
component’s ports, letting the component execute a transition, and comparing the output ports with the
required values.

Now that we do execute tests on actual program code (and no longer on models), we can actually use
standard Ada testing tools to assess the quality of our test cases with respect to structural criteria as the
attained coverage level of the code, for instance in terms of MC/DC, which is mandatory for risk class
1 software systems. Within the MOBASIS project, we have chosen the Rational Test RealTime toolset
(formerly: ATTOL UniTest & Coverage) for that purpose. Thus, by instrumenting all or parts of the
generated code to measure the desired coverage criteria, we can immediately—after completion of a
test run—obtain a report indicating the coverage level that has been achieved by our—originally
model-based—test case.

6 Combined Testing Process
So far, we have shown the way from models to Ada code and from model tests to program tests.
Although the direction of activity always points from the model level to the program level this
approach is by no means to be a one-way process.

6.1 Iterated Testing Cycles: “ Roundtrip”
The results of executing the transformed model-based tests on the generated program code have two
aspects. First, a functional one: If the model-based tests delivered functionally correct results on the
model level, it is obvious that their transformation to the program level should deliver identical results
on the generated program code (if not, then this would indicate errors either in the code generator or in
the test case transformation tool). Testing both on the model level and on the program level may seem
unnecessary and redundant at first sight, however, the benefits of such a combination will become
clearer soon. The second aspect of the test execution on the generated program code is a structural one:
As mentioned before, an instrumentation of the code can deliver valuable data concerning the coverage
on the program code that a model-based test case achieves. With these results that indicate, for
instance, which parts of the code have not sufficiently been covered by the test, we can—due to the
directly traceable mapping between model elements and generated code—easily analyze our model for
the insufficiently covered parts and subsequently modify, e.g., the boundaries for a constraint-based
search algorithm to deliver structurally better test cases. With the new test cases obtained in this way,
we can again perform testing on the code level and observe the hopefully improved coverage results.

Repeating this process several times leads to a roundtrip test case optimization process that uses
automated techniques to a large extent both on the model and on the code level, and therefore promises
to deliver high-quality test cases (both from a functional and structural point of view) rapidly.

6.2 Benefits of the Combined Approach
An approach, as just described, that combines model-based development and test case generation with
code-based text execution and analysis has several benefits for developers using this approach and the
associated tools, as well as for the method and tool developers themselves.

Model-based development uses domain-oriented abstractions that do not contain implementation-
related information to an extent as found in programming languages. Models are therefore independent
from any particular programming language and can be re-used as a whole or in parts for projects that
will in the end be implemented in different programming languages (the availability of suitable code
generators is obviously a prerequisite for this).

Since models are more compact and abstract than programs, they are more amenable to validation
techniques than programs, such as model checking or constraint-based searches. Model tests (in the
form of EETs) can be created (and archived for later usage on the code) by prototyping/simulation and
other validation techniques very early in the development process even before the first line of code of a
system has been created. For these reasons, it is more promising to perform the often tedious task of
finding test cases on models rather than on programs.

Since, however, the accepted measures for test coverage that are required in the development of safety-
critical software systems are defined only for programs and not for models at this time (defining such
measures for a specific modeling language is a research topic on its own) it is only consequent to
transfer both model an model tests to the code level, where the required measures are available. This is
particularly obvious when the actual system implementation is to be carried out by code generation
from models. Thus, in such a setting, it is possible to combine the particular strengths of the model-
based world with those of the programming language world.

What has not been explicitly mentioned so far, is the issue of correctness of code generators and test
case transformation tools (which is another area of research within MOBASIS). Proving the correctness
of such tools by formal means is—although possible in theory—practically impossible due to the effort
required. Therefore, in practice often the principle of trust in tools and tool developers by continuous
usage of tools without any major quality problems replaces formal proofs of correctness. In this
context, the seemingly redundant possibility to execute tests both on models and on generated code can
help the tool developers in finding remaining errors in their code generators (in case of inconsistent test
results), and thus in continuously augmenting the quality of their tools and—with a growing record of
projects with consistent results—in establishing confidence in the quality of their tools.

7 Conclusion and Further Work
In this paper, we have given a comprehensive overview of some of the activities in the MOBASIS
project related to the fields of testing, test case generation, and code generation. We have introduced
the AutoFocus modeling framework, have highlighted some of the applied principles in model-based
test case generation, and have then shown the basics of the generation of Ada code from models and of
the transformation of model tests into program tests, all of these illustrated by parts of the MOBASIS
example application, the leading edge system.

We have pointed out a combined approach that promises to help developers in tackling one of the most
challenging activities during development, in finding a set of test cases for their implementation that
provides relatively optimal coverage results. As described, the sketched approach combines the specific
strengths of model-based and code-based development and can thus be regarded as a “Best-of-both-
Worlds” approach. Its evaluation that is currently taking place will show how and to what extent it will
in fact help developers in carrying out this task.

Although the project-related implementation activities will be finished by the end of the project, many
activities, as indicated, are still considered work in progress, and, in particular, the fundamental
research activities in the field of test case generation will remain an area of active research even far
beyond the end of MOBASIS.

8 References
1. J. Barnes: High Integrity Ada, The SPARK Approach. Praxis Critical Systems Ltd., Addison-

Wesley, 1997.

2. G. Booch, I. Jacobson, J. Rumbaugh: The Unified Modeling Language User Guide. Addison-
Wesley, 1998.

3. M. Broy, O. Slotosch: Enriching the Software Development Process by Formal Methods.
Proceedings of FM-Trends 98, LNCS 1641.

4. F. Huber, S. Molterer, A. Rausch, B. Schätz, M. Sihling, O. Slotosch: Tool Supported Specification
and Simulation of Distributed Systems. Proceedings of International Symposium on Software
Engineering for Parallel and Distributed Systems, 1998.

5. F. Huber, B. Schätz: Integrated Development of Embedded Systems with AutoFOCUS. Technical
Report TUM-I0107, Fakultät für Informatik, TU München, 2001.

6. International Telecommunication Union: Message Sequence Charts, 1996. ITU-T Recommendation
Z.129, Geneva, 1996.

7. J. Philipps, O. Slotosch: The Quest for Correct Systems: Model Checking of Diagrams and
Datatypes. Proceedings of Asia Pacific Software Engineering Conference 1999, pp. 449-458.

8. Pretschner: Classical Search Strategies for Test Case Generation with Constraint Logic
Programming. Proc. Formal Approaches to Testing, pp. 47-60, 2001.

9. RTCA Inc., EUROCAE: Software Considerations in Airborne Systems and Equipment
Certification. DO-178B / ED-12B, 1992.

10. O. Slotosch: Quest: Overview over the Project. Proceedings of FM-Trends 98, 1998 LNCS
1641:346-350.

11. N. Tracey: A Search-Based Automated Test-Data Generation Framework for Safety-Critical
Software. PhD thesis, University of York, 2000.

12. G. Wimmel, A. Pretschner, O. Slotosch: Specification Based Test Sequence Generation with
Propositional Logic. Journal on Software Testing Verification and Reliability (to appear).

