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Functional Safety 

 Demonstration of functional correctness 

 Well-defined criteria 

 Automated and/or model-based testing 

 Formal techniques: model checking, theorem proving 

 Satisfaction of non-functional requirements 

 No crashes due to runtime errors (Division by zero,  
invalid pointer accesses, overflow and rounding errors) 

 Resource usage: 

 Timing requirements (e.g. WCET, WCRT) 

 Memory requirements (e.g. no stack overflow) 

 Insufficient: Tests & Measurements 

 Test end criteria unclear 

 No full coverage possible  

 "Testing, in general, cannot show the absence of errors." [DO-178B/DO-178C] 

 Formal technique: Abstract Interpretation 
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Static Analysis – an Overview 

 General Definition: results are only computed from the 
program structure, without executing the program under 
analysis. 

 Classification 

 Syntax-based: Style checkers (e.g. MISRA-C) 

 Unsound semantics-based: Bug-finders / bug-hunters.  

 Can find some bugs, but cannot guarantee that all bugs are found. 

 Examples: Splint, Coverity CMC, Klocwork K7, CodeSonar, … 

 Sound semantics-based / Abstract Interpretation-based 

 Can guarantee that all bugs (from the class under analysis) are found. 

 Results valid for every possible program execution with any possible 
input scenario.  

 Examples: aiT, StackAnalyzer, Polyspace Verifier, Astrée. 
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Abstract Interpretation (AI) 

 Most interesting program properties are undecidable in the concrete 
semantics. Thus: concrete semantics mapped to abstract semantics 
where program properties are decidable (efficiency-precision trade-
off).  This makes analysis of large software projects feasible. 

 Soundness: A static analysis is said to be sound when the data flow 
information it produces is guaranteed to be true for every possible 
program execution. Formally provable by Abstract Interpretation. 

 Safety: Computation of safe overapproximation of program semantics: 
some precision may be lost, but imprecision is always on the safe side.  
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AI – Industry Perspective 

 Abstract Interpretation-based static analyzers are in wide industrial 
use: state-of-the-art for validating non-functional safety properties. 

 Examples: 

 Static WCET and memory usage analysis (aiT, StackAnalyzer) 

 Static runtime error analysis (Astrée) 

 

 aiT and StackAnalyzer are in wide use by avionics companies, e.g., for 
safety-critical Airbus software in many airplane types (A380, …). 

 The aiT WCET Analyzer has been used by NASA as an industry-
standard tool for demonstrating the absence of timing-related 
software defects in the Toyota Motor Corporation Unintended 
Acceleration Investigation (2010)*.  

* Technical Support to the National Highway Traffic Safety Administration (NHTSA) on the  

  Reported Toyota Motor Corporation (TMC) Unintended Acceleration (UA) Investigation. 



clock 10200 kHz ; 

loop "_codebook" + 1 loop exactly 16 end ; 

recursion "_fac" max 6; 

SNIPPET "printf" IS NOT ANALYZED AND TAKES MAX 333 CYCLES; 

flow "U_MOD" + 0xAC bytes / "U_MOD" + 0xC4 bytes is max 4; 

area from 0x20 to 0x497 is read-only; 

Specifications (*.ais) 

 Entry Point 

 Worst Case Execution Time 

 Visualization, Documentation 

 aiT 

void Task (void) 

{ 

    variable++; 

    function(); 

    next++: 

    if (next) 

        do this; 

    terminate() 

} 

Application Code 

Compiler  

Linker 

Executable (*.elf / *.out) 
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Static WCET Analysis 

aiT WCET Analyzer combines 

 global static program analysis by Abstract Interpretation:  
microarchitecture analysis (caches, pipelines, …) + value analysis 

 integer linear programming for path analysis  

to provide safe and precise bounds on the worst-case  

execution time (WCET). 

 



Static Stack Usage Analysis 

 The required stack space has to be reserved for each task at 

configuration time => maximal stack usage has to be statically known. 

 Underestimating the maximal stack usage can cause stack overflows. 

 StackAnalyzer is an Abstract Interpretation based static analyzer which 

calculates safe and precise upper bounds of the maximal stack usage of 

the tasks in the system. It can prove the absence of stack overflows: 

 on binary code 

 without code modification 

 without debug information 

 taking into account loops  

and recursions 

 taking into account inline assembly 

and library function calls 
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Astrée: Runtime Error Analysis 

 AI-based static analyzer to prove the  
absence of runtime errors in C99 code. 

 Astrée detects all runtime errors  
with few false alarms:  
 Array index out of bounds 

 Integer/floating-point division by 0 

 Invalid pointer dereferences 

 Arithmetic overflows and wrap-arounds 

 Floating point overflows and invalid operations (IEEE floating values Inf and NaN) 

 + User-defined assertions, unreachable code, uninitialized variables 

 Efficient support for alarm analysis (variable values, contexts, …).  

 Elimination of false alarms by local tuning of analysis precision. 
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ALARM: invalid dereference:  

dereferencing 1 byte(s) at offset(s) 10  

   may overflow the variable ArrayBlock 

   of byte-size 10 at […] 



The Confidence Argument 

 Absence of hazards has to be shown with adequate confidence: the 
evidence provided can be trusted beyond reasonable doubt. 

 Abstract Interpretation is a formal verification method enabling 
provably sound analyses to be designed. 

 

 Reasoning strategy: 

1. Soundness proof of mathematical analysis specification. 

2. Automatic generation of analyzer implementation from mathematical 
specification, enabling high implementation quality. 

3. Empirical validation of chosen abstraction, i.e., analysis model. 

4. Qualification Support Kits: demonstrating implementation correctness 
in operational context of tool users. 

5. Qualification Software Life Cycle Data reports: soundness of tool 
development and validation process. 
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 Theory & Soundness Proofs 

 Abstract Interpretation 
 P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of 

Programs by Construction or Approximation of Fixpoints. Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL), 1977. 

 P. Cousot. Semantic foundations of program analysis. In S. Muchnick and N. Jones, editors, 
Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981. 

 aiT/StackAnalyzer 
 C. Ferdinand. Cache Behavior Prediction for Real-Time Systems. PhD thesis, Saarland University, 

1997. 

 S. Thesing. Safe and Precise WCET Determination by Abstract Interpretation of Pipeline Models. 
PhD thesis, Saarland University, 2004. 

 C. Cullmann. Cache Persistence Analysis for Embedded Real-Time Systems. PhD thesis, Saarland 
University, 2013.  

 Astrée 
 A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis. École polytechnique en 

informatique, École polytechnique, Palaiseau, 2004. 

 L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based static analyzers. 
Proc. of the European Symposium on Programming (ESOP), 2005. 

 J. Feret. Static analysis of digital filters. Proc. of 30th ESOP Conference, 2004. 
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Generating Program Analyzers 

 Program Analyzer Generator PAG: generates efficient data 
flow analyzers from concise mathematical specification. 

 Binary-level analyzers: variety of processors to be supported. 
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Analysis specification 

- Domains 
- Transfer functions 
- Join functions 
- Interface 

PAG 
Program 
Analyzer 

Generator 

C code 

executable 
or assembly 

CFG in CRL exec2crl 

analysis 1 analysis 2 analysis 3 ... 
Instruction set / processor specification: 

formats, instruction classes, 
name space definitions (NET) 



Model Validation 

 Especially important for WCET analysis: analyzer operates on 
processor model. It has to be shown that model conservatively 
approximates behavior of physical processor. 

 Basic validation:  

 compare analytically computed WCET bounds TA for code snippets or 
representative programs with measured times TM.  

 TA >= TM must always hold.  

 Local underestimations might be shadowed by overestimations in other 
parts, therefore additional validation required. 

 In-depth validation: 

 aiT result includes prediction of all possible execution paths with all potential 
hardware states. 

 Different hardware states correspond to different observable events. 

 All observed events must be predicted by model. 
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Model Validation (2) 

 Observable Events: 

 Performance monitoring: clock ticks, cache misses, dispatched 
instructions, mispredicted branches 

 Bus traces: requests generated by the core illustrate branch 
prediction behavior and other advanced pipeline features. 

 Instruction traces (e.g. NEXUS): every instruction emits an event at 
beginning and end of its execution. 

 Prediction graph: 

 aiT model can be configured to emit abstract traces for all these 
event types. 

 Prediction graph is sound overapproximation of all possible traces 
of events observable in reality. 

 Any measured event trace has to be part of prediction graph. 
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Automatic Trace Validation 

 Measure execution behavior on physical hardware and create traces 

 Determine prediction graph from aiT analysis 

 Check whether measured event trace is contained in prediction graph 

 Validation successful iff there is path in prediction graph covering all 
events in exactly the same order in which they have been observed. 
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Architecture Application 
Type 

Binary Size Event Types Trace Lines 

M68020 Avionics   14 MB bus 4.232.000 

MPC 5xx Avionics    3 MB instruction 3.879.000 

MPC 755 Avionics 120 MB bus  9.468.000 

aiT trace validation data for exemplary architectures 



Qualification Support Kits 

 Goal: demonstrate that the tool works correctly in the 
operational context of the user. 

1. Report Package 
 Tool Operational Requirements (TOR) 

 Low-level requirements to tool behavior under normal operating conditions. 

 Tool operational context, conditions for obtaining valid results, tool 
restrictions 

 Verification Test Plan (VTP) 

 Defines test cases for demonstrating all requirements specified in the TOR, 
including test setup, and structural and functional description of each test 
case. 

2. Test Package 
 Extensible set of test cases, including all test cases specified in the VTP. 

 GUI providing convenient access to analyzer results and support for fully 
automatic execution and evaluation of all test cases. 

 Result of tool qualification run can be stored together with other 
certification documents. 
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Qualification Support Kits 

16 



Qualification Software Life Cycle Data 

 Goal: demonstrate that tool development process fulfills safety 
demands, e.g., regarding quality assurance, traceability, 
requirements engineering and verification activities. 

 Document structure meets requirements of the DO-178B 
standard, but is applicable to other safety standards, as well. 

 

 Available documents: 

 Software Development Plan (SDP) 

 Software Configuration Management Plan (SCMP) 

 Software Quality Assurance Plan (SQAP) 

 Software Verification Plan (SVP) 

 Software Verification Results (SVR) 

 Compliance Certificate (CC) 
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Conclusion 

 Current safety standards require to demonstrate that the software 
works correctly and the relevant safety goals are met, including non-
functional program properties. In all of them, variants of static analysis 
are recommended or highly recommended as a verification technique. 

 Abstract Interpretation is formal method for statically verifying 
dynamic program properties. It defines the state of the art for 
validating non-functional software properties: WCET, stack usage, 
absence of runtime errors. 

 Confidence in correctness of analysis results: 
 Rigorous mathematical analysis theory 

 Soundness proofs of individual analysis specification 

 Automatic generation of analyzer implementation 

 Model validation, e.g., by automatic trace validation 

 Qualification Support Kits: tool operational requirements satisfied in operational 
context of tool user 

 Qualification Software Life Cycle Data: demonstrate that tool development  
process is compliant to safety requirements 
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