
Automatic Qualification of

Abstract Interpretation-based

Static Analysis Tools

Christian Ferdinand, Daniel Kästner

AbsInt GmbH

2013

Functional Safety

 Demonstration of functional correctness

 Well-defined criteria

 Automated and/or model-based testing

 Formal techniques: model checking, theorem proving

 Satisfaction of non-functional requirements

 No crashes due to runtime errors (Division by zero,
invalid pointer accesses, overflow and rounding errors)

 Resource usage:

 Timing requirements (e.g. WCET, WCRT)

 Memory requirements (e.g. no stack overflow)

 Insufficient: Tests & Measurements

 Test end criteria unclear

 No full coverage possible

 "Testing, in general, cannot show the absence of errors." [DO-178B/DO-178C]

 Formal technique: Abstract Interpretation

2

Required by

DO-178B / DO-178C /

ISO-26262, EN-50128,

IEC-61508

Required by

DO-178B / DO-178C /

ISO-26262, EN-50128,

IEC-61508

Static Analysis – an Overview

 General Definition: results are only computed from the
program structure, without executing the program under
analysis.

 Classification

 Syntax-based: Style checkers (e.g. MISRA-C)

 Unsound semantics-based: Bug-finders / bug-hunters.

 Can find some bugs, but cannot guarantee that all bugs are found.

 Examples: Splint, Coverity CMC, Klocwork K7, CodeSonar, …

 Sound semantics-based / Abstract Interpretation-based

 Can guarantee that all bugs (from the class under analysis) are found.

 Results valid for every possible program execution with any possible
input scenario.

 Examples: aiT, StackAnalyzer, Polyspace Verifier, Astrée.

3

Abstract Interpretation (AI)

 Most interesting program properties are undecidable in the concrete
semantics. Thus: concrete semantics mapped to abstract semantics
where program properties are decidable (efficiency-precision trade-
off). This makes analysis of large software projects feasible.

 Soundness: A static analysis is said to be sound when the data flow
information it produces is guaranteed to be true for every possible
program execution. Formally provable by Abstract Interpretation.

 Safety: Computation of safe overapproximation of program semantics:
some precision may be lost, but imprecision is always on the safe side.

4

Definitely

correct / in time definitely false
Definitely

correct / in time

potentially

false

Concrete

semantics

Abstract

semantics

5

AI – Industry Perspective

 Abstract Interpretation-based static analyzers are in wide industrial
use: state-of-the-art for validating non-functional safety properties.

 Examples:

 Static WCET and memory usage analysis (aiT, StackAnalyzer)

 Static runtime error analysis (Astrée)

 aiT and StackAnalyzer are in wide use by avionics companies, e.g., for
safety-critical Airbus software in many airplane types (A380, …).

 The aiT WCET Analyzer has been used by NASA as an industry-
standard tool for demonstrating the absence of timing-related
software defects in the Toyota Motor Corporation Unintended
Acceleration Investigation (2010)*.

* Technical Support to the National Highway Traffic Safety Administration (NHTSA) on the

 Reported Toyota Motor Corporation (TMC) Unintended Acceleration (UA) Investigation.

clock 10200 kHz ;

loop "_codebook" + 1 loop exactly 16 end ;

recursion "_fac" max 6;

SNIPPET "printf" IS NOT ANALYZED AND TAKES MAX 333 CYCLES;

flow "U_MOD" + 0xAC bytes / "U_MOD" + 0xC4 bytes is max 4;

area from 0x20 to 0x497 is read-only;

Specifications (*.ais)

 Entry Point

 Worst Case Execution Time

 Visualization, Documentation

 aiT

void Task (void)

{

 variable++;

 function();

 next++:

 if (next)

 do this;

 terminate()

}

Application Code

Compiler

Linker

Executable (*.elf / *.out)

6

Static WCET Analysis

aiT WCET Analyzer combines

 global static program analysis by Abstract Interpretation:
microarchitecture analysis (caches, pipelines, …) + value analysis

 integer linear programming for path analysis

to provide safe and precise bounds on the worst-case

execution time (WCET).

Static Stack Usage Analysis

 The required stack space has to be reserved for each task at

configuration time => maximal stack usage has to be statically known.

 Underestimating the maximal stack usage can cause stack overflows.

 StackAnalyzer is an Abstract Interpretation based static analyzer which

calculates safe and precise upper bounds of the maximal stack usage of

the tasks in the system. It can prove the absence of stack overflows:

 on binary code

 without code modification

 without debug information

 taking into account loops

and recursions

 taking into account inline assembly

and library function calls

7

Astrée: Runtime Error Analysis

 AI-based static analyzer to prove the
absence of runtime errors in C99 code.

 Astrée detects all runtime errors
with few false alarms:
 Array index out of bounds

 Integer/floating-point division by 0

 Invalid pointer dereferences

 Arithmetic overflows and wrap-arounds

 Floating point overflows and invalid operations (IEEE floating values Inf and NaN)

 + User-defined assertions, unreachable code, uninitialized variables

 Efficient support for alarm analysis (variable values, contexts, …).

 Elimination of false alarms by local tuning of analysis precision.

8

ALARM: invalid dereference:

dereferencing 1 byte(s) at offset(s) 10

 may overflow the variable ArrayBlock

 of byte-size 10 at […]

The Confidence Argument

 Absence of hazards has to be shown with adequate confidence: the
evidence provided can be trusted beyond reasonable doubt.

 Abstract Interpretation is a formal verification method enabling
provably sound analyses to be designed.

 Reasoning strategy:

1. Soundness proof of mathematical analysis specification.

2. Automatic generation of analyzer implementation from mathematical
specification, enabling high implementation quality.

3. Empirical validation of chosen abstraction, i.e., analysis model.

4. Qualification Support Kits: demonstrating implementation correctness
in operational context of tool users.

5. Qualification Software Life Cycle Data reports: soundness of tool
development and validation process.

9

 Theory & Soundness Proofs

 Abstract Interpretation
 P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of

Programs by Construction or Approximation of Fixpoints. Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL), 1977.

 P. Cousot. Semantic foundations of program analysis. In S. Muchnick and N. Jones, editors,
Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981.

 aiT/StackAnalyzer
 C. Ferdinand. Cache Behavior Prediction for Real-Time Systems. PhD thesis, Saarland University,

1997.

 S. Thesing. Safe and Precise WCET Determination by Abstract Interpretation of Pipeline Models.
PhD thesis, Saarland University, 2004.

 C. Cullmann. Cache Persistence Analysis for Embedded Real-Time Systems. PhD thesis, Saarland
University, 2013.

 Astrée
 A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis. École polytechnique en

informatique, École polytechnique, Palaiseau, 2004.

 L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based static analyzers.
Proc. of the European Symposium on Programming (ESOP), 2005.

 J. Feret. Static analysis of digital filters. Proc. of 30th ESOP Conference, 2004.

10

Generating Program Analyzers

 Program Analyzer Generator PAG: generates efficient data
flow analyzers from concise mathematical specification.

 Binary-level analyzers: variety of processors to be supported.

11

Analysis specification

- Domains
- Transfer functions
- Join functions
- Interface

PAG
Program
Analyzer

Generator

C code

executable
or assembly

CFG in CRL exec2crl

analysis 1 analysis 2 analysis 3 ...
Instruction set / processor specification:

formats, instruction classes,
name space definitions (NET)

Model Validation

 Especially important for WCET analysis: analyzer operates on
processor model. It has to be shown that model conservatively
approximates behavior of physical processor.

 Basic validation:

 compare analytically computed WCET bounds TA for code snippets or
representative programs with measured times TM.

 TA >= TM must always hold.

 Local underestimations might be shadowed by overestimations in other
parts, therefore additional validation required.

 In-depth validation:

 aiT result includes prediction of all possible execution paths with all potential
hardware states.

 Different hardware states correspond to different observable events.

 All observed events must be predicted by model.

12

Model Validation (2)

 Observable Events:

 Performance monitoring: clock ticks, cache misses, dispatched
instructions, mispredicted branches

 Bus traces: requests generated by the core illustrate branch
prediction behavior and other advanced pipeline features.

 Instruction traces (e.g. NEXUS): every instruction emits an event at
beginning and end of its execution.

 Prediction graph:

 aiT model can be configured to emit abstract traces for all these
event types.

 Prediction graph is sound overapproximation of all possible traces
of events observable in reality.

 Any measured event trace has to be part of prediction graph.

13

Automatic Trace Validation

 Measure execution behavior on physical hardware and create traces

 Determine prediction graph from aiT analysis

 Check whether measured event trace is contained in prediction graph

 Validation successful iff there is path in prediction graph covering all
events in exactly the same order in which they have been observed.

14

Architecture Application
Type

Binary Size Event Types Trace Lines

M68020 Avionics 14 MB bus 4.232.000

MPC 5xx Avionics 3 MB instruction 3.879.000

MPC 755 Avionics 120 MB bus 9.468.000

aiT trace validation data for exemplary architectures

Qualification Support Kits

 Goal: demonstrate that the tool works correctly in the
operational context of the user.

1. Report Package
 Tool Operational Requirements (TOR)

 Low-level requirements to tool behavior under normal operating conditions.

 Tool operational context, conditions for obtaining valid results, tool
restrictions

 Verification Test Plan (VTP)

 Defines test cases for demonstrating all requirements specified in the TOR,
including test setup, and structural and functional description of each test
case.

2. Test Package
 Extensible set of test cases, including all test cases specified in the VTP.

 GUI providing convenient access to analyzer results and support for fully
automatic execution and evaluation of all test cases.

 Result of tool qualification run can be stored together with other
certification documents.

15

Qualification Support Kits

16

Qualification Software Life Cycle Data

 Goal: demonstrate that tool development process fulfills safety
demands, e.g., regarding quality assurance, traceability,
requirements engineering and verification activities.

 Document structure meets requirements of the DO-178B
standard, but is applicable to other safety standards, as well.

 Available documents:

 Software Development Plan (SDP)

 Software Configuration Management Plan (SCMP)

 Software Quality Assurance Plan (SQAP)

 Software Verification Plan (SVP)

 Software Verification Results (SVR)

 Compliance Certificate (CC)

17

Conclusion

 Current safety standards require to demonstrate that the software
works correctly and the relevant safety goals are met, including non-
functional program properties. In all of them, variants of static analysis
are recommended or highly recommended as a verification technique.

 Abstract Interpretation is formal method for statically verifying
dynamic program properties. It defines the state of the art for
validating non-functional software properties: WCET, stack usage,
absence of runtime errors.

 Confidence in correctness of analysis results:
 Rigorous mathematical analysis theory

 Soundness proofs of individual analysis specification

 Automatic generation of analyzer implementation

 Model validation, e.g., by automatic trace validation

 Qualification Support Kits: tool operational requirements satisfied in operational
context of tool user

 Qualification Software Life Cycle Data: demonstrate that tool development
process is compliant to safety requirements

18

19

email: info@absint.com

http://www.absint.com

